

The European Spallation Source

Mark Hagen
ESS Data Management and Software Centre

Mark.Hagen@esss.se

www.europeanspallationsource.se

e-Infrastructure Reflection Group, November 10th 2014

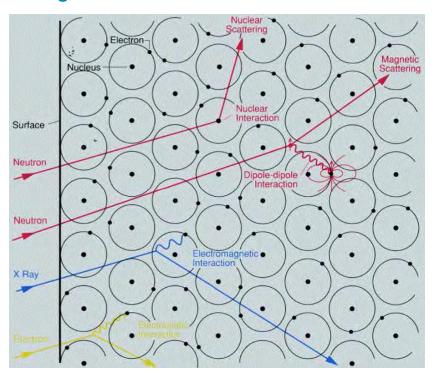
Outline

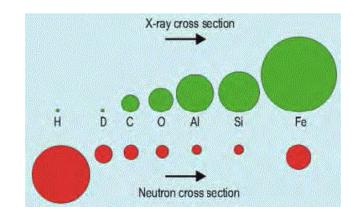
- o (Very brief) What is neutron scattering?
- Context for the ESS project + (very brief) why is ESS brighter
- ESS Partnership + Organization
- DMSC Data Management and Software Centre
 - Mission & scope for ESS + other projects
- Where could e-Infrastructures help ESS ??

Timeline:

- ➤ ESS accelerator & target produce first neutrons 2019
- ➤ ESS (first 16) instrument construction completes 2019 to 2025
- ESS User research program begins in 2023

Thermal Neutron Scattering


Charge neutral


Deeply penetrating

Nuclear scattering Sensitive to light elements and isotopes

Thermal neutrons

Wavelengths and energies comparable to the inter-atomic spacings and lattice dynamical energies in materials

S=1/2 spin probe directly magnetism

$$\frac{\mathrm{d}^{2}\sigma}{\mathrm{d}\Omega \mathrm{d}E'} = \frac{k'}{k} (\gamma r_{0})^{2} \left| \frac{g}{2} F(\vec{k}) \right|^{2} e^{-2W(\vec{k})} \sum_{\alpha\beta} (\delta_{\alpha\beta} - \hat{\kappa}_{\alpha} \hat{\kappa}_{\beta}) \times \int dt \, e^{-i\omega t} \sum_{ll'} e^{i\kappa \cdot (\mathbf{r}_{l} - \mathbf{r}_{l'})} \langle \mathbf{S}_{l}^{\alpha} (0) \mathbf{S}_{l'}^{\beta} (t) \rangle$$

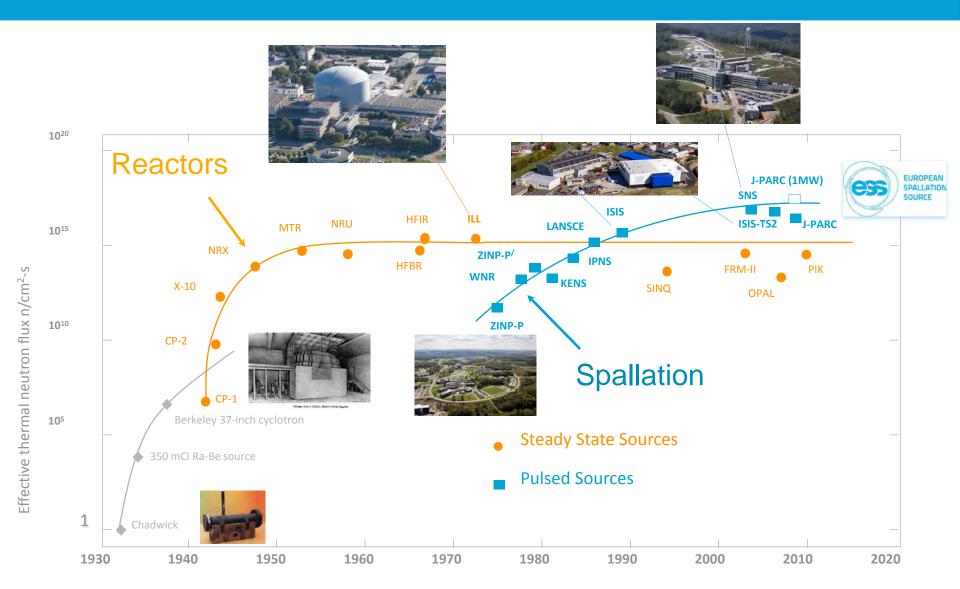
Thermal Neutron Scattering

Neutron scattering as a technique can be used in the study of a wide variety of materials,

- o Soft Condensed Matter
 - Self-assembled colloids
 - Polymers
 - Thin film devices
- o Life Sciences
 - Macromolecular structures
 - Solution of macromolecular complexes
 - Bio-molecules
- o Magnetic phenomena
 - High temperature superconductivity
 - Quantum phenomena
 - Molecular magnets
- o Chemistry
 - In-Situ processing
 - Catalysis
 - Waste management

- Energy research
 - Fuel cells
 - Gas storage materials
 - New battery materials
- Engineering sciences, environmental sciences & culture
 - In-situ welding
 - Cultural heritage
- Fundamental physics
 - Lifetime of the neutron
 - Decay mechanisms

Global context for ESS Project


- 1996 OECD setup a Neutron Sources Working Group as part of its Megascience forum
- 1998 OECD report 3 major economic areas, USA, Japan, Europe should build new next generation neutron sources both for capacity & to replace older sources
- 2006 ESFRI (European Strategy Forum on Research Infrastructures) priority for ESS/neutrons 2010 roadmap update, 2014 priority to move forward
- Part of a suite of neutron and x-ray facilities for materials research

	USA	Japan	Europe
High intensity x-ray synchrotron	Advanced Photon Source	Spring-8	European Synchrotron Radiation Facility(1)
Free Electron Laser pulsed x-rays	Linac Coherent Light Source	SACLA (FEL)	European XFEL (1,2)
High flux reactor neutron source	HFIR reactor	JRR3M reactor	Institut Laue Langevin (1)
High intensity spallation neutron source	Spallation Neutron Source	J-PARC (JSNS)	European Spallation Source (1,2)

(1) On the ESFRI roadmap, (2) Under construction

Historical context for ESS Project

ESS, SNS and MLF/J-PARC

O Things that are the same:

Use protons to create neutrons via Spallation

Things that are different:

- SNS uses H- and a ring to produce p
- o ESS will produce p from a plasma & only a Linac
- SNS & MLF/J-PARC use Liq-Hg target
- o ESS will use rotating W wheel
- o J-PARC & SNS have short p & n pulses
- o ESS will have a long pulse structure

O Things that are the same:

- Time of flight neutron scattering instruments
- o "Materials and Life Sciences" Research

Europe is in a good position

Materials Structure Facilities

Two best facilities in world:

Reactor: I.L.L.

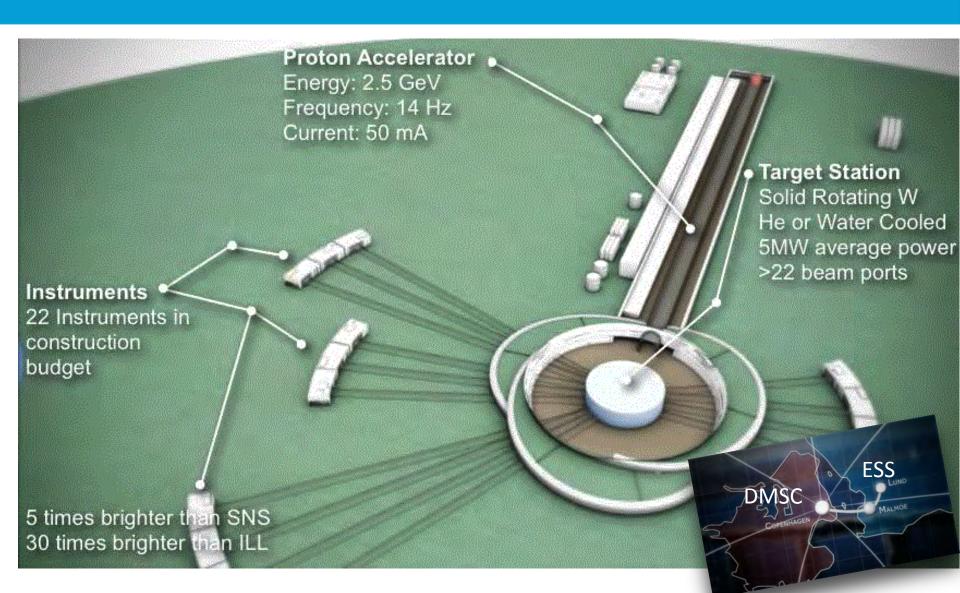
X-ray synchrotron: ESRF

Under construction 2 best facilities

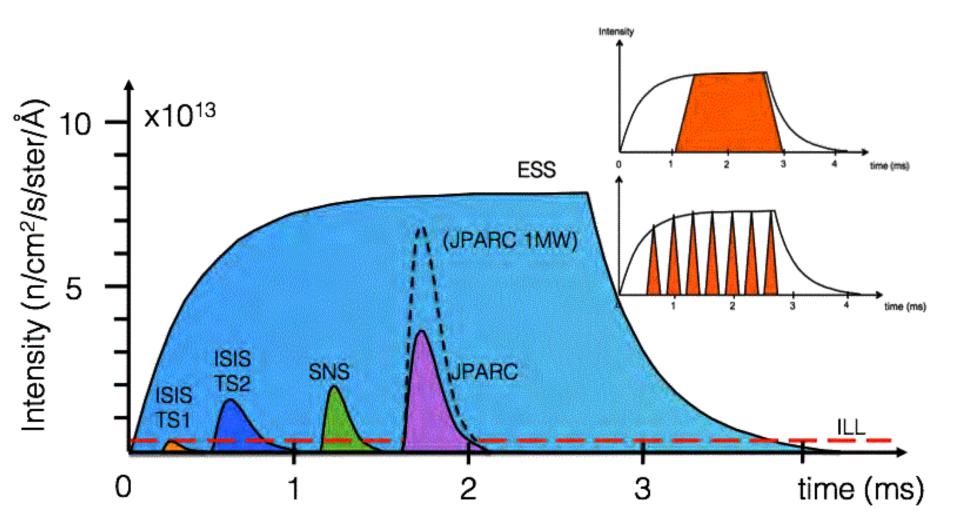
in world:

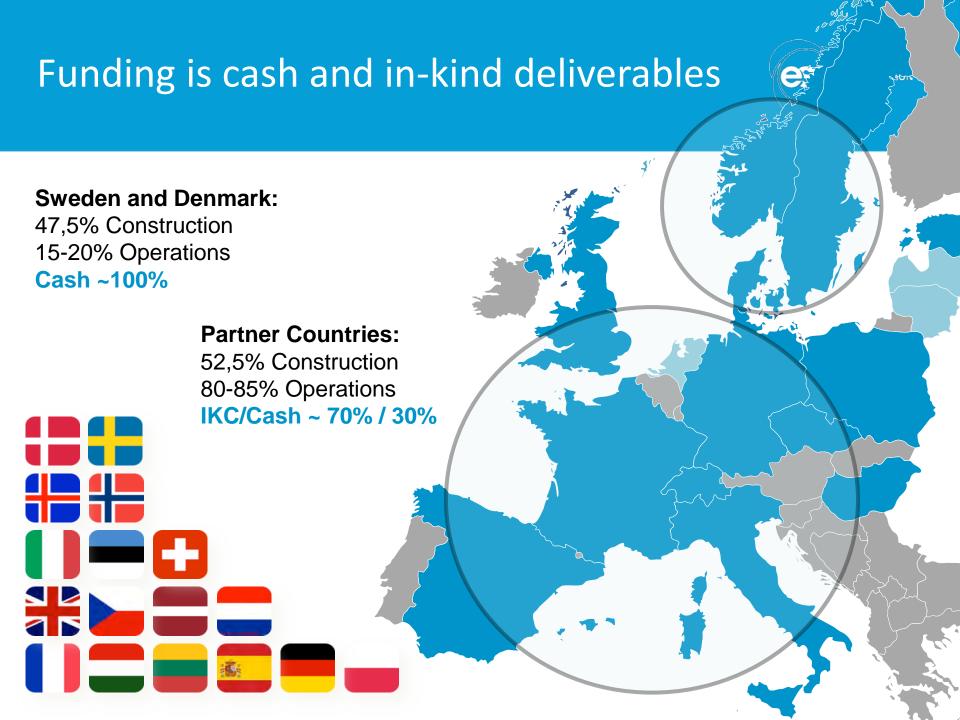
XFEL: European XFEL

Spallation: E.S.S.



How will the ESS work?





ESS and the Long Pulse

The Long Pulse of ESS

ESS construction funding status

Contributions by Member Country (August 2014)

Contributions by Member Country (August 2014)		
Country	Percentage	
Sweden	35.0%	
Denmark	12.5%	
Germany	11.0%	
United Kingdom	10.0%	
France	8.0%	
Italy	6.0%	
Spain	5.0%	
Switzerland*	3.5%	
Norway	2.5%	
Poland	2.0%	
Hungary	1.5%	
Czech	0.3%	
Estonia	0.25%	
To Be Determined **	2.5%	
	Total 100%	

^{* 3.5%} planned share. 1.4% adopted for the period 2014-2019.

^{**} Discussion ongoing with the Netherlands, Latvia, Lithuania and Iceland.

ESS Cost Baseline

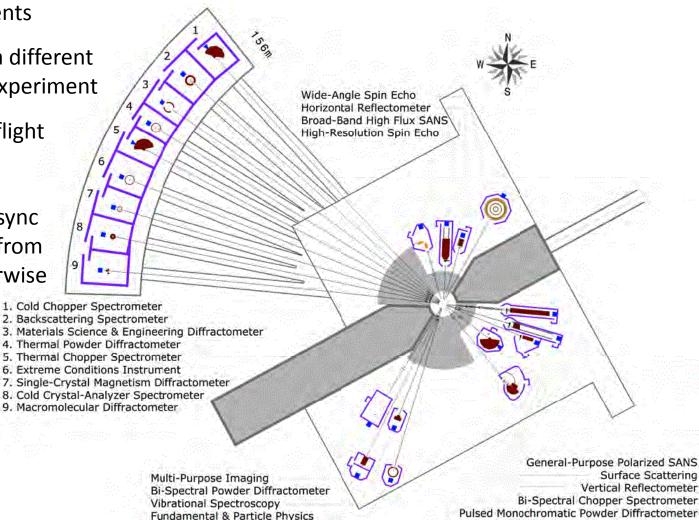
ESS Construction Budget	M€ ¹⁾
Conventional Facilities, Energy, and Infrastructure Support	531.9
Accelerator Systems	510.0
Target Systems	155.3
Neutron Scattering Systems	350.0
Integrated Control System	72.9
Design & Engineering	33.7
Project Support & Administration and Licensing ²⁾	123.7
Contingency	158.5
Conventional Facilities Funded by Host Countries ³⁾	-93.0
Total Construction Budget and ESS Cost Book Value	1843.0

¹⁾ All costs are stated in January 2013 pricing

²⁾ Project Support & Administration includes the DG Office and AD for Operations, ES&H and QA

³⁾Conventional Facilities construction budget assumes Host Countries will cover costs and risk above the 423 M€ value described in the ESS Cost Report, dated December 2012.

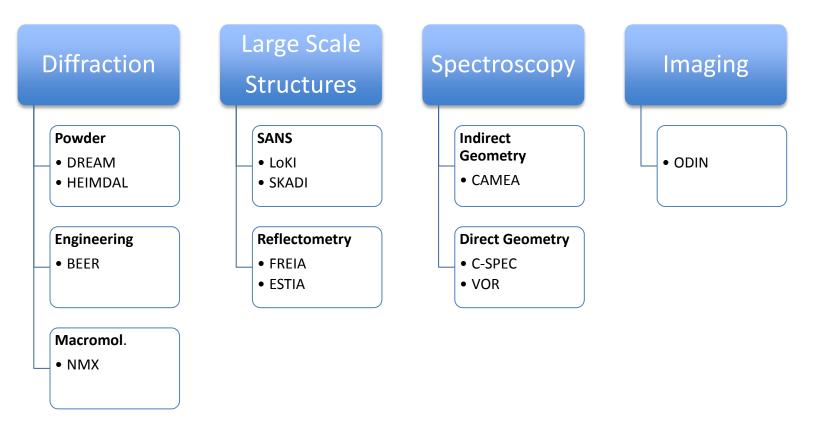
Science Research Program


Suite of 16 instruments

 Each optimized for a different class of scattering experiment

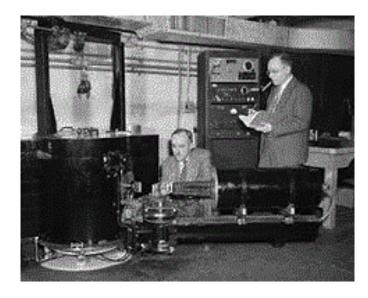
 Operate by time of flight neutron scattering

 All receive a timing sync pulse and neutrons from the source but otherwise

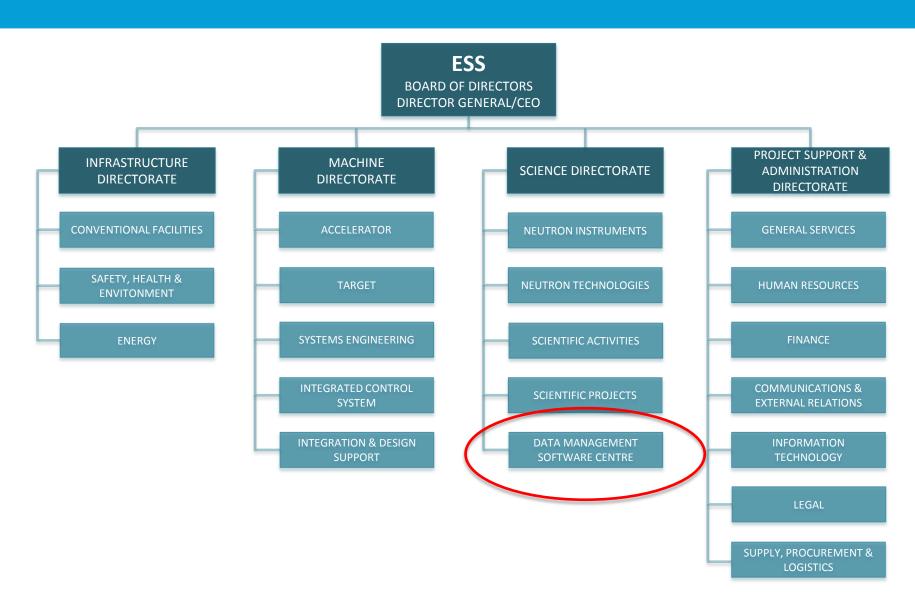

operate independently.

ESS Neutron Instrument Suite

- \circ Process: Proposals \rightarrow Scientific & Tech. Advisory Panels \rightarrow Science Advisory Council (SAC)
- ESS Steering Committee (STC) has approved 12 instruments for suite
- o This leaves 4 instruments still to choose out of funding for 16 instruments



User Research Program (Operations)


User Facility

- 1947: First neutron scattering experiments
- Nobel Laureate Cliff Shull
- 1950/60's neutron scattering done in small groups
- 1970's: new model → "User" Facility
- "Open Access" model now used by "all" facilities
- Model required to be an ESFRI
- Competitive and responsive
- 6 monthly call for proposals to use instruments (advertised, web submission)
- Open to anyone: academia, research institutes, companies, etc.
- Peer review of proposals done by external (non-ESS) panels
- ESS provides staff to:
 - Operate the instruments with the users
 - Operate the sample environment equipment
 - Provide data analysis support to users
 - Schedule the scientific user program (proposals, travel, training...)

ESS Organization

Science Directorate/NSS Project

Science Directorate is responsible for the scientific research program at ESS

- ➤ During the construction phase for the process of selecting & constructing the instruments for the research
- > During operations for the operation of the user facility research program

Neutron Instruments Division: The scientists involved in the conceptual design in construction and who work with the users to perform the experiments in operations

Neutron Technologies Division: Responsible for the specialized instrument components, choppers, guides, detectors.

Scientific Activities Division: Responsible for the scientific coordination of the user scientific research program and the scientific support facilities – sample environment, chemistry & biology laboratories.

Data Management and Software Centre: Responsible for instrument control, data acquisition/reduction/analysis software and making data/software available to users.

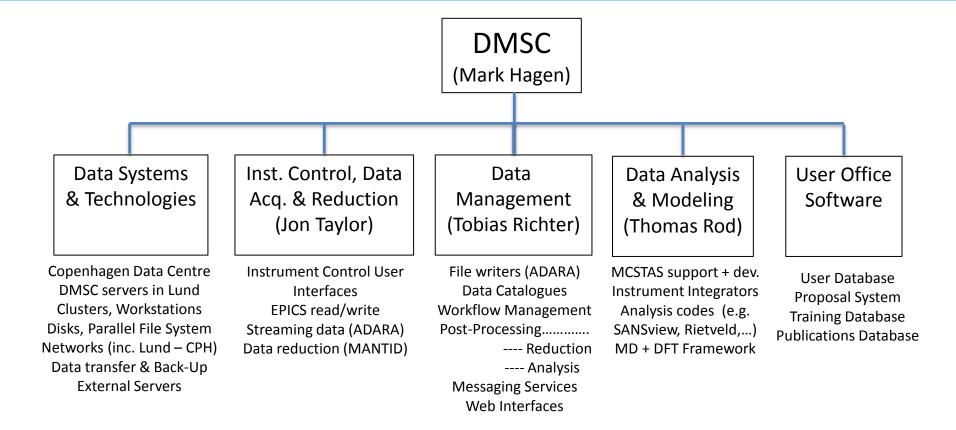
Scientific Projects Division: During construction for coordinating the engineering and construction of the instruments.

What is DMSC?

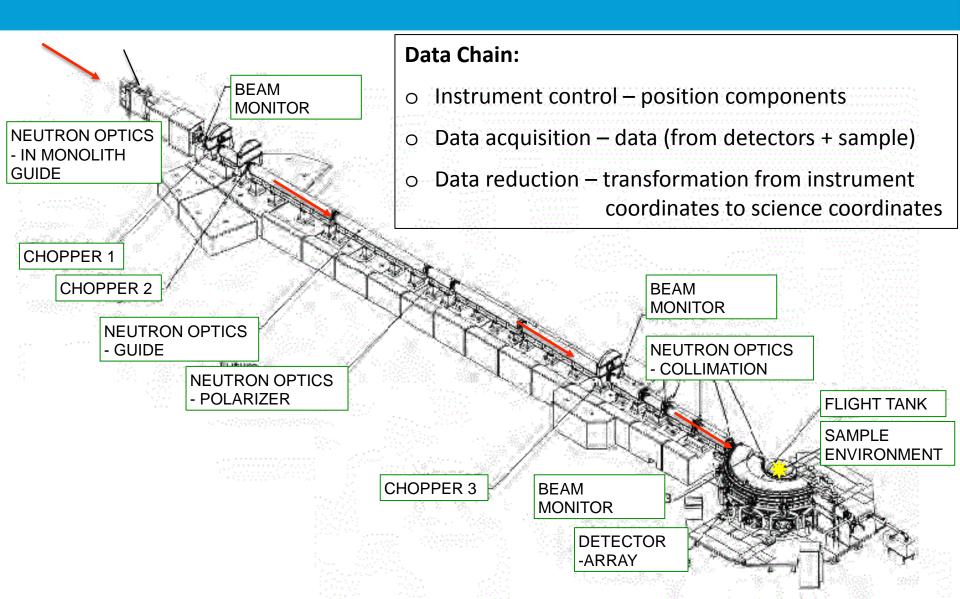
- Data Management and Software Centre (DMSC)
- A Division of ESS Science Directorate...
 ... just like Neutron Technologies,
 Neutron Instruments etc.
- o Mission:

To use the techniques and methods of scientific computing to facilitate, enable and advance the scientific research to be carried out using the neutron beam instruments at the European Spallation Source.

- Two campuses: ESS Lund & ESS Copenhagen
 (Universitetparken, Københavns Universitet)
- DMSC building to be constructed in Copenhagen

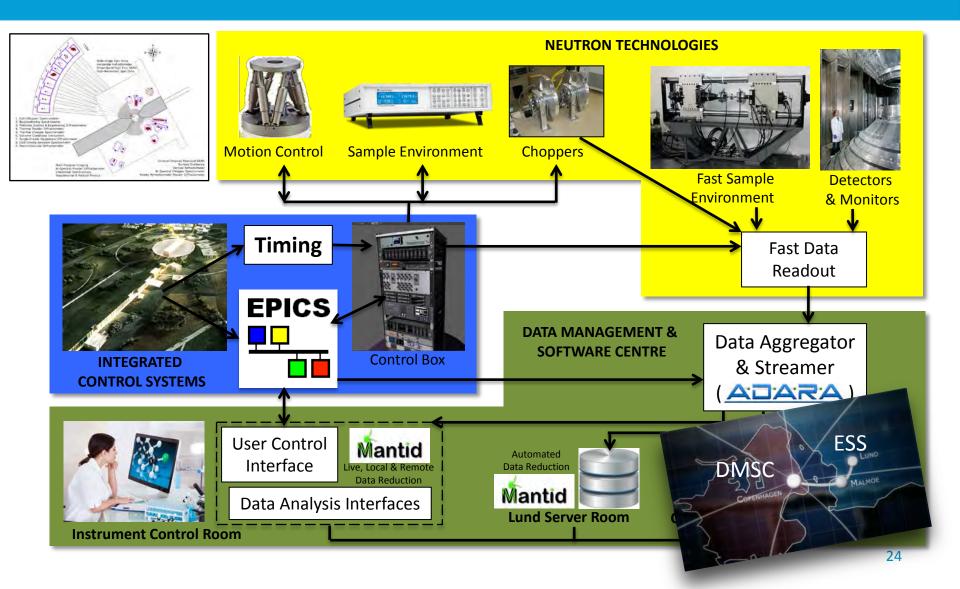

What is DMSC's scope?

- Construction Phase of ESS (2014 2019) & Neutron Beam Instruments (2014 2025)
 - Software for the Inst. Control & Data Management (Acq., Reduction, etc.)
 - Software for Data Analysis
 - > Software framework to do Live and Automated Data Reduction/Analysis
 - Software for managing the scientific user program
 - Hardware for data storage and data reduction/analysis (inc. remote)
- Operations Phase of ESS & Neutron Beam Instruments (2019 2067)
 - ➤ Maintenance and development of all of the above software
 - Emphasis on Data Analysis, Modeling & Simulation for ESS Users/Science
 - Supporting ESS Users with Data Analysis, Modeling & Simulation
 - Integration of simulation/modeling techniques (e.g. Molecular Dynamics and Density Functional Theory) into calculation of neutron scattering cross sections & data analysis


DMSC's Organization

Time of Flight Neutron Instruments

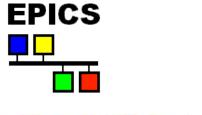
DMSC's Priorities



During the construction phase:

- 1. The *highest priority* for DMSC must be that the instrument control software and data management infrastructure and software are *ready, tested and working* when the first ESS instruments come online.
- 2. The *second highest priority* for DMSC should be that basic data analysis and modelling software is also available for those instruments.
- The software for the business management of the scientific research program must be ready, tested and working for the start of the scientific user research program in 2023.
- The data analysis and modelling work must be ramped up during construction in order to be ready to meet this need in ~2023 onwards.

Data Acquisition, Reduction & Control



Data Acquisition, Reduction & Control

Data Acquisition, Streaming & Reduction

Used by ESS accelerator/target, SLS, Diamond, US light sources, to be used by ISIS & SNS

Publish/subscribe software & protocol for streaming data (neutron + meta)

Data reduction framework in Python & C++ developed by ISIS & SNS

ICAT data cataloguing software developed under NMI3 by PanData collaboration of 19 European facilities (+ SNS in US)

Data Acquisition, Reduction & Control

Data Streaming

ADARA

Aggregator

PVStreamer (link to EPICS)

Interface to detector readout

Streaming (HDF5) file writer

Data stream monitoring

Data Reduction, Cataloguing & Post-processing

MANTID

Reduction tailored to ESS instruments

Visualization

Live Listener (to data stream)

Live data visualization

Automated (post-acquisition) reduction

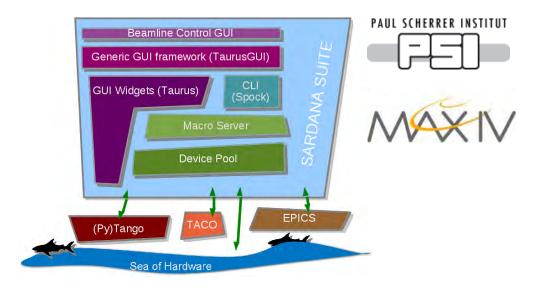
Cataloguing – ICAT

Instrument Control Interface

(Py) EPICS

Instrument server - user client

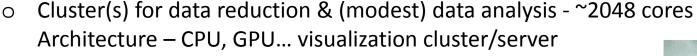
Generic interface toolset


+ instrument customization

Interface to ADARA

MANTID partner apps

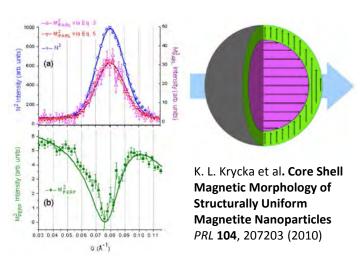
Planning tool partner apps


Data analysis hooks for feedback

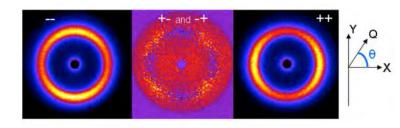
Data Systems & Technologies

- o DMSC will not be a "supercomputer" centre
- Data (disk) storage:
 - Back of the envelope → ~4 PBytes/yr
 - Spectrum of file sizes: ~100MByte ~10's GByte ~1TByte
 - Fast disk (200MByte/s) & Parallel File System (10GByte/s)

- Data download servers sftp & gridftp
- Remote login capability for ESS users:
 - Re-reduce data using cluster
 - Data analysis software available for users
 - PaNDaaS (Photon and Neutron Data as a Service)
- Software development servers repositories, bug trackers, build servers



Data Analysis


- Data on disk is useless!
 - It is published results from the data that makes progress
- Need to ensure that ESS users have access to
 - appropriate software packages for data analysis
 - the necessary computational resources to exploit the software to obtain those results
 - analysis software during experiment to influence the data taking strategies
- Roll out in-sync with instruments

Structure of Nanomaterials

Polarized SANS demonstrated that these nanoparticles have uniform nuclear structure but core-shell magnetic structure.

Required development of both data reduction and data analysis methods and tools.

Projects in addition to ESS funding

SINE2020

- EU Horizon 2020 proposal (INFRADEV-4)
- Five main partners:

Main topics:

- Innovation based on neutrons experiments
- Ready for ESS in 2020

Facility	Task
ILL+FZJ+PSI	Mantid for continuum sources
ESS	SANS (SASView)
FZJ	Reflectometry (BornAgain)
ILL	Modelling (nMoldyn)
ISIS	QENS (Mantid)
PSI	Imaging (MuhRec/KipTool)

Projects in addition to ESS funding

PaNDaaS (Photon and Neutron Data as a Service)

- EU Horizon 2020 proposal (INFRADEV-4)
- Twenty one partners:
 ESRF, Diamond, Soleil, Alba, Elettra, MAX-IV, DESY, E-XFEL, SLS/SwissFEL, KIT/ANKA, CYI, HZB (x-rays)
 ESS, ILL, ISIS, SINQ (neutrons), ELI-ALPS (light)
 SESAME, SLAC (SSRL/LCLS), SNS + 2 companies
- Provide pan-facility access to data, reduced data and analysis tools

How can e-Infrastructures help ESS??

- When the Users (researchers) at at the facility (e.g. ESS) the facility provides help
- Facilities provide reduced data (+ are working on pan facility access PaNDaaS)
- Data analysis "quick" analysis is done during experiment but...
 - ... major analysis is done "at home" when users return to Univ. etc.
 - ... typical timescale 2 years +/- 1 year
- O What does the "analysis" involve??
- Modeling "fitting" the reduced data to models of the material
- Semi-analytic models: Rietveld for powder diffraction, SANS models (hard spheres etc.)

•••

- Using simulation: Molecular dynamics and DFT
- Data on disk is useless
 it is data analysis (modeling) that leads to discovery

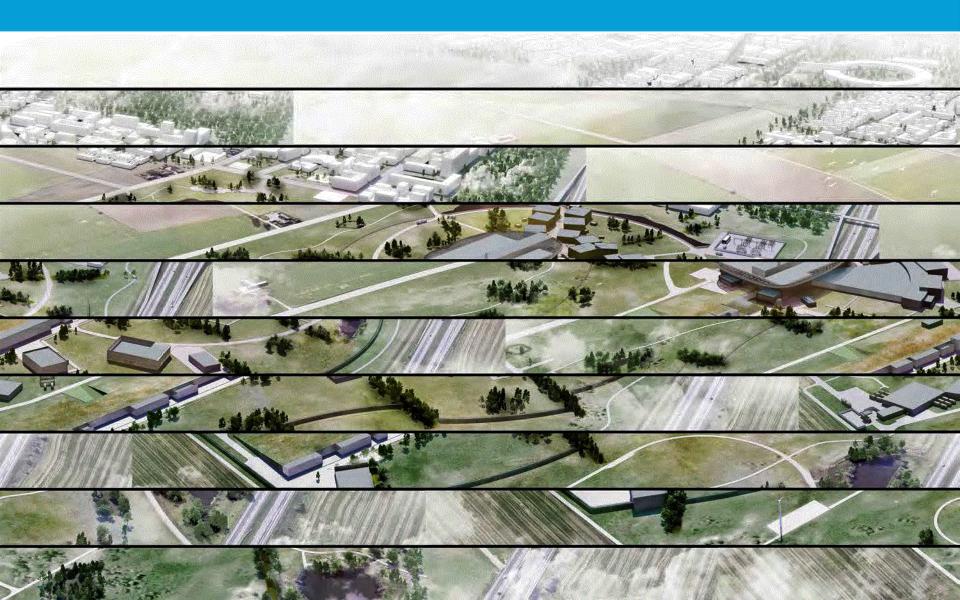
How can e-Infrastructures help ESS??

- The ESS will produce "more" raw & reduced data than previous neutron facilities
 - More is not just data volumes it means more research (experiments) performed
 - More also means more new users who have not yet built experience
- The user community is diverse
 - Geographically diverse (pan-European & global)
 - Come from wide spread of disciplines
 - Wide range of computational skills + needs
 - Single investigator/small group but collaborative
 - Want to link to related data –

X-ray (PaNDaaS) but also their own lab data (NMR, TGA, etc.)

- Supporting the user community to turn reduced data into discovery:
 - > It's the modeling tools + resources more than the data itself
 - > Should it be driven by the facilities??
 - ➤ Should it be driven from the disciplines??
 - > Should it be driven by the e-Infrastructures??

ESS Construction has Begun


- o Construction on the ESS site has begun in 2014
- Accelerator + target & first neutrons in 2019

o Instrument rollout 2019 – 2025 (16 instruments)

ESS looking towards MAX IV

ESS Target Building

QUESTIONS

