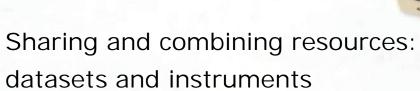


e-Infrastructure governance: structures and financial issues

Erwin Bleumink, managing director of SURFnet Brussels, e-IRG Workshop, 14 October 2010


User perspective: services

More data centred

For virtual organisations

As a global activity

Using all what's available

- Personal equipment
- Services in the cloud

Open access

Video on collaboration, eResearch will be included

e-Infrastructure Ecosystem

Expertise

Research and Scholarship Education Learning and Workforce Development Interoperability and operations Cyberscience

Organizations

Universities, schools Government labs, agencies Research and Medical Centers Libraries, Museums Virtual Organizations Communities

Scientific Instruments

Large Facilities, MREFCs, telescopes
Colliders, shake Tables
Sensor Arrays

 Ocean, environment, weather, buildings, climate. etc

Collabora Computational Resources Education

Supercomputers Clouds, Grids, Clusters Visualization Compute services Data Centers

Discovery Collaboration Education

Data

Databases, Data repositories
Collections and Libraries
Data Access; storage, navigation
management, mining tools,
curation

Software

Applications, middleware
Software development and support
Cybersecurity: access,
authorization, authentication

Networking

Campus, national, international networks
Research and experimental networks
End-to-end throughput
Cybersecurity

Maintainability, sustainability, and extensibility

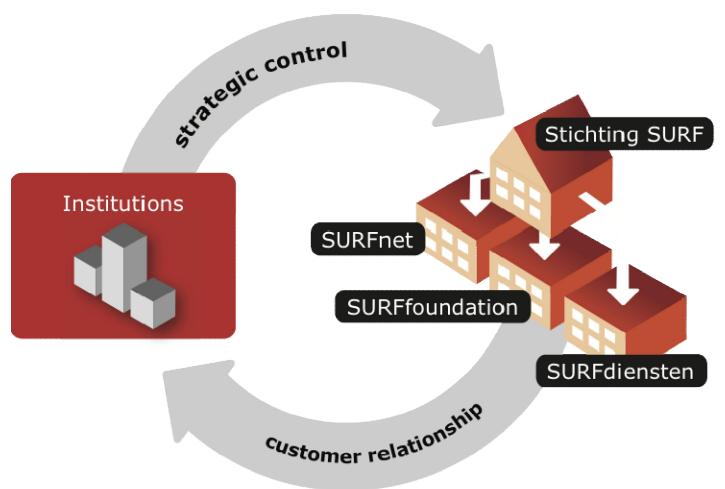
e-Infrastructure ecosystem

- Providing seamless access to services enabled by internationally shared use of:
 - Computing and storage facilities
 - Generic application services
 - Sensors and instruments
 - Network resources
- Providing hassle free end-to-end interworking via a single user interface and a single control plane for the allocation of multiple resources, from multiple domains and in multiple locations worldwide
- Adapting itself continuously to the demands of an ever changing outside world

e-Infrastructure for Science: an ecosystem

- COM (2009) 108, ICT Infrastructures for e-science: "e-Infrastructure is an environment where research resources (hardware, software and content) can be readily shared and accessed wherever this is necessary to promote better and more effective research"
- The e-IRG recently produced a White Paper 2009, a Roadmap 2010 and a Blue Paper for ESFRI, addressing the change to e-Infrastructure as a service
- On 6 October 2010 the High-Level Group on Scientific Data made recommendations to enable Europe 'to gain from the rising tide of scientific data'

SURF


Hence...

- It's about services and their integration
- Close collaboration with users and e-Infrastructure service providers is urgently needed
- Coordination between domains on a worldwide scale should be our focus
- Open innovation is key

Governance in NL: users control strategy

Source: Innovation considered, ICT innovation as practised by SURFnet, Frank van Iersel, Kees Neggers, for the Dutch Ministry of Economic Affairs

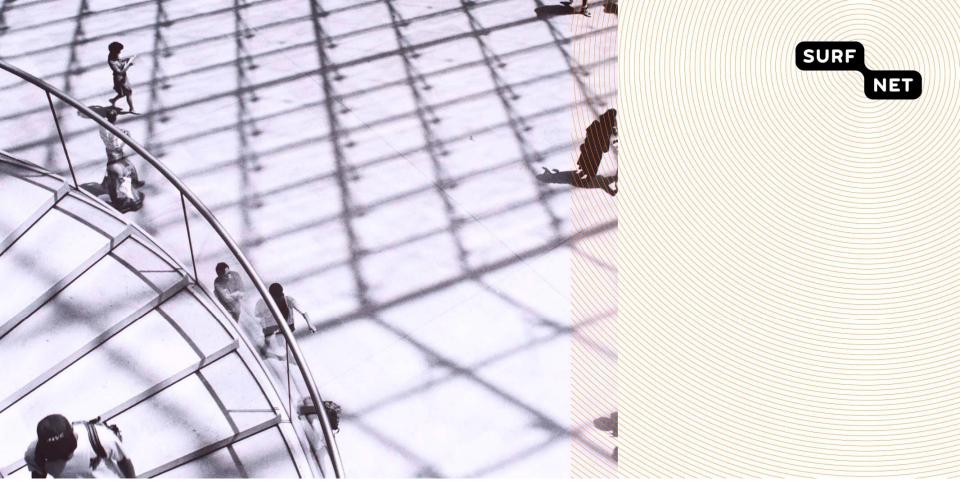
Governance in NL: integration and financing

- Integration of governance
 - In May 2009: the Government decided to reorganise the Dutch national e-Infrastructure
 - Stichting SURF will become responsible for the ICT infrastructure, overseeing Research & Education Networking, Grid Computing, Supercomputing, and services for e-science
 - Via SURF users will have the control over strategy and investments policies
- Activities are financed both via tariffs and innovation subsidies thereby combining the interests of the research and education community and the national economy

Requirements for governance of an European e-Ecosystem

- Prioritise investment on user driven strategies
- Include users in private research (PPP)
- Use what's available in the private ICT-sector
- Ride the waves of national strengths and national user involvement
- Include experiences of leading edge international user groups, e.g. around large scale multi-domain facilities, being part of a worldwide e-Ecosystem
- Set and require open standards for generic services

Accompanying financing model


- Earmark additional funds for the innovation of the scientific e-Ecosystem (ref. High-Level Group on Scientific Data, 06-10-10)
- Financial support on a matching base:
 - EU-investments leverage national investments
 - National investments leverage campus investments
- Profit from private investments in ICT services and ICT innovation
 - No limitations for the participation of industry research
 - ICT-innovation for science and education is the innovation engine for the general ICT-market
 - Private investments in 'commodity' ICT-services are complementary to public investments

To summarise and start the discussion

- E-Infrastructure can best be considered an e-Ecosystem: delivering an adaptive seamless set of various ICT-services
- Investment in e-Infrastructure should be user driven with a key role for existing national and international user bodies
- Early innovation of ICT remains a key argument for public support of the e-Ecosystem
- Europe should give an impulse by matching national, regional or user group funding for specific e-Infrastructure investments

Thank you for your attention

erwin.bleumink@surfnet.nl