
Exascale software technical point of view

Sebastian von Alfthan

Exascale

- Achievable by 2019
- Major software challenge – paradigm shift away from MPI?
- Heterogeneous computing

From top500.org: http://www.top500.org/files/TOP500_Looking_back_HWM.pdf

Several project addressing these issues on EU and national level

Challenges

1. Power

- How to fit inside power budget?
- Extrapolating current generation processors not good enough; heterogeneous processors
- Sustaining memory bandwidth requires too much power (from 0.3 to 0.003 bytes/flops ?)

2. Concurrency

Billion-way parallelism in applications needed

Challenges

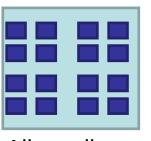
3. Resiliency

- Resiliency against faults & performance variation
- Checkpointing difficult, Bandwidth to disks trailing (far) behind

4. Programming

 Programming models coping with concurrency, heterogeneous hardware


Hardware trends


- Per core speed not increasing
 - Processors with hundreds to thousands cores
 - Single thread performance still important (Amdahls law)
 - Hybrid manycores integrating accelerators appears unavoidable
- Data movement power hungry
 - Difficult providing bandwidth to cores
 - Stacked memory?

All large core

Hybrid manycore

All small core

Hardware trends

- Network
 - Optical networks low power, high bandwidth
 - Enables high radix routing (Cray)
 - Bytes/Flops will be orders of magnitude lower
- I/O growth rate slow
 - Checkpointing difficult (MTBF vs. write time)
 - Additional memory layer needed?

Software challenges

- Extreme parallelism needed
 - Coping with locality, overheads, latency and contention
 - Low GB/Flops for memory, I/O & Interconnect
- Support for heterogeneous processors
- Resiliency
- Ease of use!

Scaling applications

- Strong scaling
 - Will in practice not be possible...
- Weak scaling
 - Scaling up seems tractable
 - Larger problem or increased resolution
 - Timescales also tend to increase...

Scaling applications

- Coupled multiple image application
 - Stochastic simulations
 - Coupled models
 - Replica simulations
 - Multiphysics

Programming models

- MPI
 - Will not scale paradigm shift at hand
- Mpi+Threads/accelerators
 - MPI+StarSS (http://www.project-text.eu) / OpenMP
 - MPI cuda / opencl / HMPP / PGI...
- PGAS (upc, caf, x10, chapel)
 - The compiler & runtime can do optimization
- Heterogenity need to support different compute elements in a portable way
- New models?

Conclusions

- Software platform
 - programming models enabling all levels of parallelism in applications to be expressed
 - "Smart" compilers / run-times /libraries
 enabling these too run on a heterogeneous
 platforms with different characteristics
 - Resiliency handled by run-times / system
- Prototypes of hardware platforms

Conclusions

- Applications
 - European scientific communities (& industry) engaged to develop key applications for Exascale
 - Tuning vs. new applications