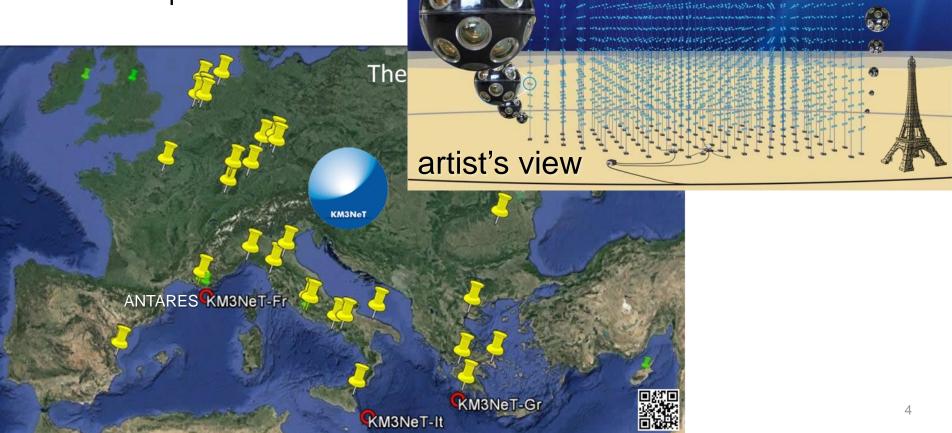

KM3NeT e-Needs

Kay Graf e-IRG open Workshop Luxembourg November 2015

Astroparticle Physics e-Needs

- Astroparticle physics uses
 - detection techniques from particle physics to study astrophysical phenomena
 - different messenger particles: gamma, Cosmic Rays, neutrinos,...
- especially neutrino astronomy:
 - 1990/2000s: "branched" from particle physics
 - following: technology and analysis development phase (first generation projects)
 - \Rightarrow "low" e-Needs, branch out at the "pre-grid" time
 - in between: intermediate generation experiments
 - now: the second/third generation detectors, including KM3NeT with e-Needs comparable to particle physics experiments again ⇒ "high" e-Needs, branch into the (almost post-) grid time
- KM3NeT solution: base on available e-Infrastructures (ANTARES) and include new developments in eCommons


What is KM3NeT?

- deep-sea research infrastructure in the Mediterranean Sea
- includes
 - ARCA: large telescope for neutrino astronomy/astrophysics
 ⇒ exceeds existing telescopes by substantial factor in sensitivity
 - ORCA: dense detector for neutrino physics
 ⇒ first measurement of neutrino mass hierarchy
 - provides node for earth and marine sciences

Detector and Collaboration

- European collaboration
- 3 installation sites
- starting installation of first phase

Resource Review

Board

Institute Board

Chair: M. Talut

V1-20150227

Voduction Phase

Collaboration

HE Astrophys.: R. Conjulior

Simulations: C.James

Science

LE Physics (ORCA): A. Kouchne

Saftw./Comp.System: K. Graf

GNO Liaison Officer: U. Katz

Multi-discipline Liaison Office

K. Mannhein

EU Liaison Officer

Project management team

sics & Software Monoger: U. Kotz

oject office Operation Hired professional

Data Management

Off-line Softw/Comp. System: K. Graf

On-line DAQ/Readout Syst: T. Chiarusi

Project Steering Committee

Spokesperson: M. de Jong

Deputy Spokesperson: P. Coyle Technical Project Manager: M. Circella now

Scientific and

Technical Advisory

Committee

Publication Committe

Chair: P. Piattelli

Conference and Outreach Committee

Chair: P. Sapienza

OA/OC Manager: A. Grimm

Installation Site Manager KM3NeT-H

Installation Site Manager KM3NeT-IT

Installation Site Manager KM3NeT-Gr

Detector Construction

Qualification: 5. Henry

Mechanics: E. Berbee

Electronics: D. Real Calibration: G. Riccobern

P. Lamare

M. Anahinoifo

Status and Stages of the Project

- Phase-1
 - ✓ transition from consortium to collaboration
 - Organisation and administration set up (management, steering committee, MoU)
 - Oversight in place (Resources Review Board, Scientific & Technical Advisory Committee)
 - ✓ acquired funds for 0.2 building blocks
 - started construction
 - start science (size = 3 x precursor experiment ANTARES)

next

- science capitalisation
- funding requests on-going for 3 building blocks

• 3

future

possible expansion

Site Construction

Power system: R. Cociman

Optical system: G. Kieft

Application to ESFRI Roadmap 2016

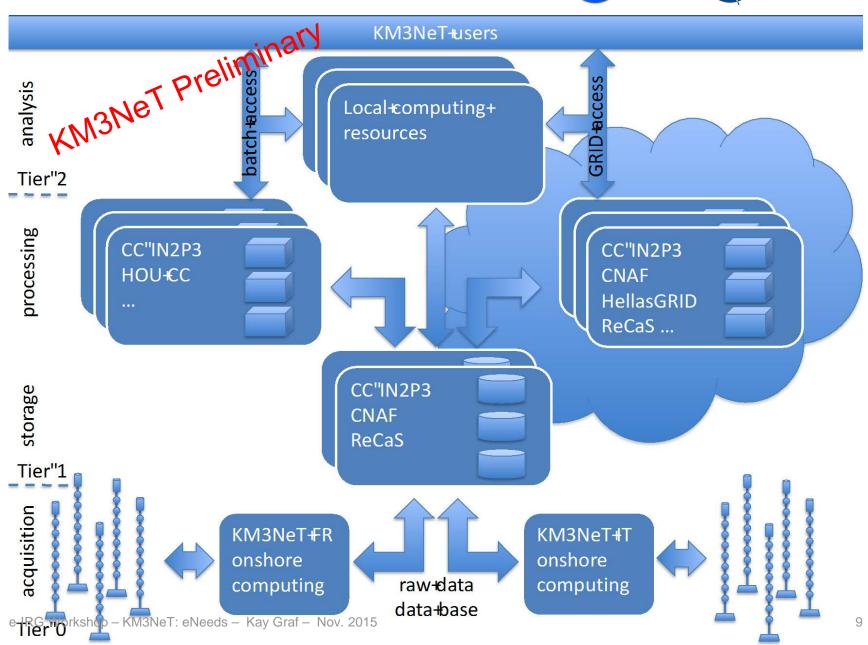
Advantages w.r.t. original proposal (2006)?

- science ______augmented
 - cosmic neutrinos exist (was hypothetical)!
 - significantly improved discovery potential for neutrino point sources
 - first determination of mass hierarchy of neutrinos
- technology_____proven
 - interest from other experiments
 - e.g. Neutrino Telescopes Workshop, 2-6 March 2015, Venice
 - Tommaso Dorigo's blog during about KM3NeT optical module: *"I think these are quite cool objects."*
- costs_____reduced
 - spending profile matched with realistic funding scenario
- implementation ______ agreed
 - coherent support from all parties

Science – Flashlights

- Origin of cosmic rays is for more than 100 years one of the outstanding scientific questions (old)
 - neutrino astronomy is at the edge to make a break-through (new)

- CP-violation needed to explain [anti-]matter imbalance in the Universe is not yet found (old)
 - neutrino physics provides opportunity to find missing link between particle physics


Computing Model and Data Management: General Scheme

• Tier-like structure, mixed access: GRID + direct (batch)

Tier	Computing Facility	Processing steps	Access
Tier-0	at detector site	triggering, online-calibration, quasi-online reconstruction	direct access, direct processing
Tier-1	computing centres	calibration and reconstruction, simulation	direct access, batch processing and/or grid access
Tier-2	local computing clusters	simulation and analysis	varying

- Data transfer between the computing centers based on GRID access tools (where applicable)
- Central services funded through CNRS and INFN, additional services by the collaboration institutes

Data Management Plan

- Data formats and meta-data following common practise (root, xml, ascii) → allow for integration in eCommons
- use of existing eCommons (e.g. from ANTARES) and specific development via ASTERICS
 - contacts with e.g. EGI, GÉANT, GAR, RENATER, surfNET
- Data storage:
 - essential: reproducibility and usability of all scientific results over full time of experiment (+ 10 years after shut-down)
 - parallel storage of low- and high-level data at CC-Lyon and CNAF (long-term commitments, pledged resources)
 - central services like software repository, central software builds
 - additional resources available (e.g. 500TB HDD disk space at ReCaS via INFN)
- Data processing by specialized service group
- Data access: via WAN/GRID access tools (xrootd, iRODS and gridFTP)

Open Data Policy

- central goal: prompt dissemination of scientific results, new methods and implementations
- public access
 - summary data (event information plus quality information) after fixed latency (typically 2 years)
 - defined in MoU
 - web based downloads of data and software
 - harmonize with GNN, <u>ASTERICS</u> (as well as for other eCommons)
- on request
 - more (detailed) data, earlier releases, etc.
- observer in KM3NeT collaboration (free of charge)
 - access to all data, meetings, etc. (but no voting rights)
 - co-author if he/she contributed to publication

eCommons in Neutrino Astronomy

- Integration of IceCube data?
 - Yes, under umbrella of
 - joint publications

- 1st ANTARES/IceCube paper to be published
- book on neutrino astronomy in preparation (World Scientific)
- exchange of sky maps
- exchange of detector performance data
- discussions on costs
- collaboration between working groups from both experiments (including yearly workshop – MANTS)
- Integration of data from other neutrino experiments?
 - published data
 - neutrino oscillation data (values + uncertainties) used in combined fits
 - example Memoranda of Understandings of ANTARES
 - real-time alerts (e.g. TaToo)
 - pipe-lined data streams (e.g. Virgo)

Training Services

- Interface to VO, including training tools and training programs
- Training services for scientists and students
 - central software boot camps, etc.)
 - cooperation with (Astro-)Particle Physics Masterclasses (COSMICS)
- disseminate data from detector operation (acoustics, environment monitoring) – incl. documentation and training courses
 ⇒ outside community

Questions from the ESFRI QNR – personal comments

- 4.1. What will be the data management and open data policy of the RI?
 - clear question, answer see above
- 4.2. What is the plan for supporting advanced data management and how will it be funded?
 - clear question, answer: committed partners
- 4.3. What is needed from external e-infrastructure services?
 - does not fully apply as there is large project-internal support see 4.2
- 4.4. Will the RI contribute to the development of e-infrastructure commons in the field or in general?
 - certainly, eCommons highly important
- 4.5 Will the RI policy on data include training services for "data practitioners" to enable the effective use of data repositories and data analysis tools by non-scientists?
- certainly for scientists, why also for non-scientists? e-IRG Workshop – KM3NeT: eNeeds – Kay Graf – Nov. 2015

Summary

- KM3NeT currently in Phase-1
- Data management plan and computing model established
 ⇒ sustainable also for the next project phases
- KM3NeT collaboration
 - actively uses eCommons (taken over from ANTARES and other experiments)
 - contributes to their further development
- Discussion, feedback and advice is always welcome!

Backup Slides

Computing Needs for Phase 1 (per year)

processing stage	size per proc. (TB)	time per proc. (HS06.h)	size per year (TB)	time per year (HS06.h)	periodicity (per year)
Raw Data					
Raw Filtered Data	85	-	85	M3Net Pre	1
Monitoring and	43		12		iminal ,
Minimum Bias Data	43	-	43	TPre	
Experimental Data				13Nel.	
Processing			- K	N.S.	
Calibration (incl.	213	3 M	425	6 M	2
Raw Data)	215	5 101	420	0 101	۷
Reconstructed Data	43	15 M	85	31 M	2
DST	21	4 M	43	8 M	2
Simulation Data					
Processing					
Air showers	10	14 M	10	14 M	1
atm. Muons	5	1 M	5	1 M	1
neutrinos	2	22 k	20	220 k	10
total:	208	37 M	290	60 M	17

Computing Needs for 1 Building Block (per year)

processing stage	size per proc. (TB)	time per proc. (HS06.h)	size per year (TB)	time per year (HS06.h)	periodicity (per year)
Raw Data					
Raw Filtered Data	300	-	300	-	1
Monitoring and Minimum Bias Data	150	-	150	- pre	liminary 1
Experimental Data Processing			KM	3NeT Pre	
Calibration (incl. Raw Data)	750	24 M	1500	48 M	2
Reconstructed Data	150	119 M	300	238 M	2
DST	75	30 M	150	60 M	2
Simulation Data Processing					
Air showers	100	14 M	50	7 M	0.5
atm. Muons	50	1 M	25	638 k	0.5
neutrinos	2	22 k	20	220 k	10
total:	827	188 M	995	353 M	18