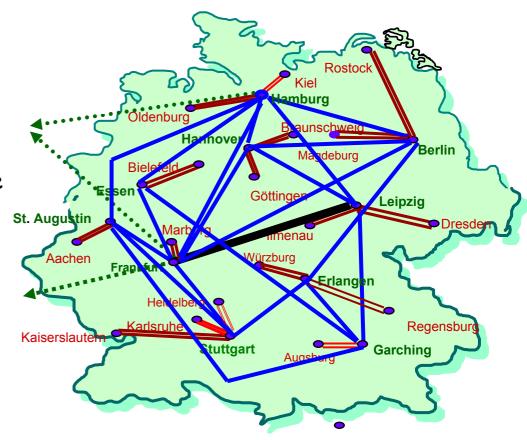
Perspectives of Grids and e-Science in Germany


Forschungszentrum Karlsruhe GmbH
Hauptabteilung Informations- und Kommunikationstechnik
Abteilung Grid Computing und e-Science
Hermann-von-Helmholtz-Platz 1
D-76344 Eggenstein-Leopoldshafen

Dr. Marcel Kunze

A German Grid Initiative

- Kickoff workshop in February 2003 (Wissenschaftszentrum Bonn)
- Initially driven by the research centers of the Helmholtz association and the DFN-Verein
- Open to all interested partners, in academia and industry
- Strategic program paper will be written until summer

10 Gbit/s 2,4 Gbit/s 1 Gbit/s

622 Mbit/s

Strategic Considerations

- Development of a common Grid infrastructure to integrate resources for science and industry
 - Standardization of interfaces and components
 - Implementation of backbone network with non-trivial QoS
- Deployment of a network of competence and coordination centers for Grid computing
 - Deployment of Middleware and Dissemination via Grid User Support Centres
- Implementation of generic and prototyping Grid applications
 - E-Science applications
 - E-Business models
 - Development of programming models, tools and application specific middleware for dynamic, scalable, autonomous and secure Grid applications
- Development of problem solving environments for e-Science
 - Applicable in Science, Economy, Culture and Education
 - Knowledge based systems
 - Besides technical and scientific knowledge: Integration of economic knowledge
 - Work with unreliable sources and missing values

Building Grids: Technical Challenges

Building a Grid among friends

- All sites deploying similar hardware
- Long history of collaboration among principals
- System design not expected to scale to millions of participants
- Running a general public production Grid for eInfrastructure
 - System must be bullet-proof, useful, usable
 - Heterogeneity in community and hardware, design must scale
 - Heterogeneity in programming models (real-time, on-demand, adaptive, etc.)
 - Provide programming environments and tools
 - · How do we debug a Grid program?

Building an international eInfrastructure

Logistical Challenges

- Software maintenance
- Accounting and billing over multiple administrative domains
- Resource co-allocation over multiple sites

Legal Challenges

 Deal with varying institutional policies, open source policies, licensing policies, etc.

Ideological Challenges

- Organizational framework to promote development of stable, persistent infrastructure
- Commercial vs. academic community should someone make a profit?
- Shared/private, free/charged for, centralized/distributed

Building an international eInfrastructure

Political Challenges

- Integration of different cultures wrt administration of resources, operations, SW development and deployment
- Global management of resources in a secure and dependable way
- Decision making and enforcing
- Mechanisms to select and support applications (equity)
- Ensure stable, persistent, long-term, adequate funding

