

Introduction to Fenix and ICEI

Dirk Pleiter, JUELICH and Colin McMurtrie, CSCS/ETH Zurich

Sophia, Bulgaria

14 May 2018

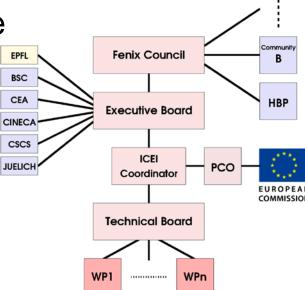
The ICEI project has received funding from the European Union's Horizon 2020 research and innovation programme under the grant agreement No 800858.

www.fenix-ri.eu

Fenix Goals

- Establish HPC and data infrastructure services for multiple research communities
 - Encourage communities to build community specific platforms
 - Delegate resource allocation to communities
- Develop and deploy services that facilitate federation
 - Based on European and national resources

Science community driven approach


- Infrastructure realisation and enhancements based on co-design approach
- Science communities providing resources to realise infrastructure → HBP SGA Interactive Computing E-Infrastructure
- Resource allocation managed by community

Fenix Governance Structure

Fenix is a Consortium

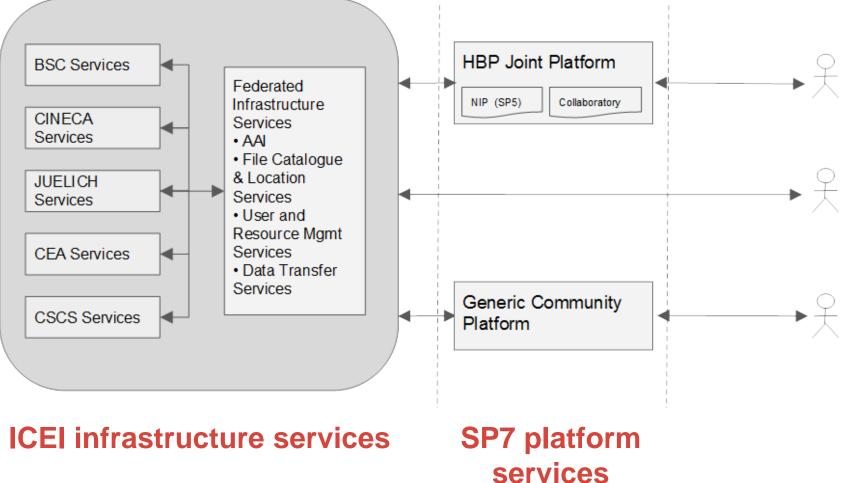
- Establishing an MoU between the participating HPC sites
 - Comprised of large HPC sites within Europe
 - Currently, BSC, CEA, CINECA, CSCS, JSC
 - The intention is to keep the number of participating sites below 10
- EPFL included for the ICEI part only
 - Fenix has close ties to the HBP via ICEI (next slide)

ICEI as the First Instantiation of

- opportunity
 - Funding available from the EC for a federated data and compute infrastructure
 - Name: Interactive Computing e-Infrastructure (ICEI)
 - Nice fit with the concept for Fenix which had grown out of the Federated Data Pilot Project (FeDaPP) run in 2016 at the start of HBP SGA1
 - ICEI is the first Instantiation of the Fenix Infrastructure
 - Funds the development of many of the federated services in Fenix
 - HBP-centric but Fenix has the goal to be more general

ICEI Summary

- ICEI is an SGA under the HBP FPA-CA
 - EPFL is the coordinator of HBP and hence plays a role in ICEI coordination
- ICEI to provide infrastructure services to HBP
 - HBP SP7 (High-performance Analytics and Computing Platform) is in the roleof developer/provider of platform services
 - Strong links between ICEI and SP7 DoA
- Timeline overview
 - Evaluation of proposal finalised by the EC in 4Q2017
 - Project duration of **63 months** (1.1.2018 31.3.2023)
 - First resources available at CSCS as of April 2018
 - First **co-design workshop** took place on 9.2.2018
 - Public Information event held 15 March 2018
 - **RFI meetings** held with vendors 26-27 May 2018



Fenix Architectural Concept (1/2)

- Service-oriented provisioning of resources
 - Focus on infrastructure services suitable for different science communities
- Support for community specific platforms
 - Encourage and facilitate community efforts
 - Federation of infrastructure services
 - Enhance availability of infrastructure services
 - Broaden variety of available services
 - Optimise for data locality

Architectural Concept (2/2)

Overview over Planned Fenix Services

Computing services

- Interactive Computing Services
- (Elastic) Scalable Computing Services
- VM Services
- Data services
 - Active Data Repositories + (federated) Archival Data Repositories
 - Data Mover Services, Data Location and Transport Services
- Other
 - Authentication and Authorisation Services
 - User and Resource Management Services (FURMS)
 - Monitoring Services
 - Internal/external interconnect

Interactive Computing Services

Interactivity

- Interactive processing of data
- Capability of a system to support distributed computing workloads while permitting
 - Monitoring of applications
 - On-the-fly interruption/steering by the user
- Architectural requirements
 - Interactive access
 - Tight integration with scalable compute resources
 - Fast access to storage resources
- Support for interactive user frameworks
 - Jupyter notebook, R, Matlab/Octave

(Elastic) Scalable Computing Services

- Different options for service provisioning
 - Access to highly scalable compute resources with possible longer wait times
 - Elastic access to a limited amount of compute resources
- Possible realisation of elastic provisioning
 - Free resources by means of checkpoint/resume mechanisms
 - Reserve (small) amount of nodes
- Considered use case
 - Coupling of neuro-robotics experiments to brain simulations
- Open co-design questions
 - Upper limit for acceptable response times
 - Scaling range

Virtual Machine Services

Use case

- Deployment of community platform services running 24/7
- Examples: HBP Collaboratory, database servers, visualisation services

Requirements

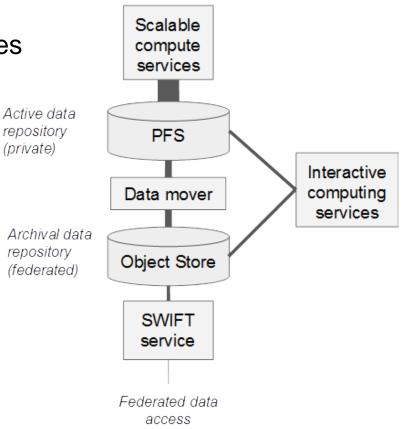
- Allow communities to flexibly create and manage VM services similar to a cloud environment
- Provide stable infrastructure services

Architectural Concepts: Data Store Types

Archival Data Repository

- Data store optimised for capacity, reliability and availability
- Used for storing large data products permanently that cannot be easily regenerated

Active Data Repository


- Data repository localized close to computational or visualization resources optimised for performance
- Used for storing temporary slave replica of large data objects

Storage Architecture

Concept

- Federated archival-class data repositories with Cloud interfaces
- Non-federated active data repositories with POSIX interface accessible from HPC nodes
- **Envisaged implementation**
 - Mandate same technology at all sites
- Current prime candidate:
 OpenStack SWIFT
 ENIX RI

Resource Allocation Model

Actors

- Fenix Resource Providers
- Fenix Communities
- Fenix Users
- Role of Fenix Resource Providers
 - Provide fixed amount of resources for given period to Fenix Communities
 - Define rules for resource allocation (e.g., peer-review process)
- Fenix Users
 - Submit proposal for resources to relevant Fenix Community
- Fenix Community
 - Review proposal and award available resources to Fenix Users

Fenix Credits

- Fenix Credit =
 - Vouchers for authorising resource consumption
- Different types of resources
 - Scalable compute resources (N_{node} × time)
 - Interactive computing services (N_{node} × time)
 - Active data repositories (capacity × time)
 - Archival data repositories (capacity)
 - Virtual Machines (VM flavours[cores, memory, network IPs] x time)
- Credit attributes
 - Value and type of resource
 - Fenix Resource Provider
 - Validity period

Note

Fenix Credits will only allow to use the ICEI infrastructure. Other access mechanisms apply for other resources (e.g. PRACE)

User Management

Model

- Scientist identifies itself through virtual identity issued by accepted Identity Provider
- Scientist registers with Fenix Community to become a Fenix User

Workflow

- Scientist obtains virtual identity
- Scientist applies for membership in a Fenix Community and accepts Fenix Community Usage Agreement
- Fenix Community decides on application

Q&A

colin.mcmurtrie@cscs.ch

Fenix Website: https://fenix-ri.eu

