Introduction to Fenix and ICEI

Dirk Pleiter, JUELICH and Colin McMurtrie, CSCS/ETH Zurich

Sophia, Bulgaria

14 May 2018
Fenix Goals

- Establish HPC and data **infrastructure services** for multiple research communities
 - Encourage communities to build community specific platforms
 - Delegate resource allocation to communities
- Develop and deploy services that facilitate **federation**
 - Based on European and national resources
- **Science community driven approach**
 - Infrastructure realisation and enhancements based on co-design approach
 - Science communities providing resources to realise infrastructure
 → HBP SGA Interactive Computing E-Infrastructure
 - Resource allocation managed by community
Fenix Governance Structure

- Fenix is a Consortium
 - Establishing an **MoU** between the participating HPC sites
 - Comprised of large HPC sites within Europe
 - Currently, BSC, CEA, CINECA, CSCS, JSC
 - The intention is to keep the number of participating sites below 10
- EPFL included for the ICEI part only
 - Fenix has close ties to the HBP via ICEI

(next slide)
The Human Brain Project (HBP) presented a unique opportunity

- Funding available from the EC for a federated data and compute infrastructure
- Name: **Interactive Computing e-Infrastructure** (ICEI)
- Nice fit with the concept for Fenix which had grown out of the Federated Data Pilot Project (FeDaPP) run in 2016 at the start of HBP SGA1

ICEI is the **first Instantiation** of the Fenix Infrastructure

- Funds the development of many of the federated services in Fenix
- HBP-centric but Fenix has the goal to be more general
ICEI Summary

- ICEI is an SGA under the HBP FPA-CA
 - EPFL is the coordinator of HBP and hence plays a role in ICEI coordination

- ICEI to provide infrastructure services to HBP
 - HBP SP7 (High-performance Analytics and Computing Platform) is in the role of developer/provider of platform services
 - Strong links between ICEI and SP7 DoA

- Timeline overview
 - Evaluation of proposal finalised by the EC in 4Q2017
 - Project duration of 63 months (1.1.2018 – 31.3.2023)
 - First resources available at CSCS as of April 2018
 - First co-design workshop took place on 9.2.2018
 - Public Information event held 15 March 2018
 - RFI meetings held with vendors 26-27 May 2018
Fenix Architectural Concept (1/2)

- Service-oriented provisioning of resources
 - Focus on infrastructure services suitable for different science communities

- Support for community specific platforms
 - Encourage and facilitate community efforts

- Federation of infrastructure services
 - Enhance availability of infrastructure services
 - Broaden variety of available services
 - Optimise for data locality
ICEI infrastructure services

SP7 platform services
Overview over Planned Fenix Services

- **Computing services**
 - Interactive Computing Services
 - (Elastic) Scalable Computing Services
 - VM Services

- **Data services**
 - Active Data Repositories + (federated) Archival Data Repositories
 - Data Mover Services, Data Location and Transport Services

- **Other**
 - Authentication and Authorisation Services
 - User and Resource Management Services (FURMS)
 - Monitoring Services
 - Internal/external interconnect
Interactive Computing Services

- **Interactivity**
 - Interactive processing of data
 - Capability of a system to support distributed computing workloads while permitting
 - Monitoring of applications
 - On-the-fly interruption/steering by the user

- **Architectural requirements**
 - Interactive access
 - Tight integration with scalable compute resources
 - Fast access to storage resources

- **Support for interactive user frameworks**
 - Jupyter notebook, R, Matlab/Octave
(Elastic) Scalable Computing Services

- Different options for service provisioning
 - Access to highly scalable compute resources with possible longer wait times
 - Elastic access to a limited amount of compute resources

- Possible realisation of elastic provisioning
 - Free resources by means of checkpoint/resume mechanisms
 - Reserve (small) amount of nodes

- Considered use case
 - Coupling of neuro-robotics experiments to brain simulations

- Open co-design questions
 - Upper limit for acceptable response times
 - Scaling range
Virtual Machine Services

Use case

- Deployment of community platform services running 24/7
- Examples: HBP Collaboratory, database servers, visualisation services

Requirements

- Allow communities to flexibly create and manage VM services similar to a cloud environment
- Provide stable infrastructure services
Architectural Concepts: Data Store Types

- **Archival Data Repository**
 - Data store optimised for *capacity, reliability and availability*
 - Used for storing large data products permanently that cannot be easily regenerated

- **Active Data Repository**
 - Data repository localized close to computational or visualization resources *optimised for performance*
 - Used for storing temporary slave replica of large data objects
Storage Architecture

- **Concept**
 - Federated archival-class data repositories with Cloud interfaces
 - Non-federated active data repositories with POSIX interface accessible from HPC nodes

- **Envisaged implementation**
 - Mandate same technology at all sites
 - Current prime candidate: OpenStack SWIFT
Resource Allocation Model

■ Actors
 ■ Fenix Resource Providers
 ■ Fenix Communities
 ■ Fenix Users

■ Role of Fenix Resource Providers
 ■ Provide fixed amount of resources for given period to Fenix Communities
 ■ Define rules for resource allocation (e.g., peer-review process)

■ Fenix Users
 ■ Submit proposal for resources to relevant Fenix Community

■ Fenix Community
 ■ Review proposal and award available resources to Fenix Users
Fenix Credits

- Fenix Credit = Vouchers for authorising resource consumption
- Different types of resources
 - Scalable compute resources \((N_{\text{node}} \times \text{time}) \)
 - Interactive computing services \((N_{\text{node}} \times \text{time}) \)
 - Active data repositories (capacity \(\times \text{time} \))
 - Archival data repositories (capacity)
 - Virtual Machines (VM flavours[cores, memory, network IPs] \(\times \text{time} \))

- Credit attributes
 - Value and type of resource
 - Fenix Resource Provider
 - Validity period

Note
Fenix Credits will only allow to use the ICEI infrastructure. Other access mechanisms apply for other resources (e.g. PRACE)
User Management

Model
- Scientist identifies itself through virtual identity issued by accepted Identity Provider
- Scientist registers with Fenix Community to become a Fenix User

Workflow
- Scientist obtains virtual identity
- Scientist applies for membership in a Fenix Community and accepts Fenix Community Usage Agreement
- Fenix Community decides on application
Q&A

colin.mcmurtrie@cscs.ch

Fenix Website:
https://fenix-ri.eu