

Impact of the energy crisis on e-INFRA CZ

Introduction

e-INFRA CZ is consortium of

CESNET (NREN, EOSC mandated organisation),

o IT4Innovations (HPC Center),

CERIT-SC (Scientific Cloud)

 Operator of the national e-infrastructure and research institutions

 International cooperation -GEANT, EGI, EuroHPC, EOSC

Just a problem or also an opportunity?

- From 0.11Eur/kWh to 0.29EUR/kWh (with Price Cap)
- CESNET Metacentrum Grid/Cloud from 350K EUR for 2022 to 700K EUR expected for 2023
 - ○180kW IT
 - Additional Community resources (the same amount of CPUs) = Community expenses
 - ○We are not alone in the problem
- CESNET distributed CEPH storage infrastructure 600K EUR expected for 2023 for (160kW)
- Large research university ~ 8,5M Eur in 2022
- Could even small steps have a value?
- Opportunity → Green computing

Green Computing

- Current effort analyse effectivity of computations
 - Categories of SW and their usual behaviour
 - Targeted user support, workflow optimisation
 - Match HW + SW better with task, CPU/Memory/IO bound slots
 - o GPU, AI, RISC, research and development of new algorithms and numerical methods
 - Network upgrade, large chassis → smaller boxes (less energy and flexibility)
- Service Ecosystem
 - Peak hours, Price per hour, ...
 - Electricity distribution system announcements
 - Backup Diesel generator as a source
 - o Datacenter/housing parameters (PUE, use of waste heat, ...) size matters
 - Precise measurement
 - HW lifecycle (distributed shorter steps, faster adoption time for new technology)

Green Computing II

- New/Increased emphasis on energy efficiency
 - Generic optimisation of HW (and SW) on consumption (impact of 10% cpu frequency?)
 - HW with more precise energy consumption monitoring
 - Dynamic optimisation by task (EAR), HW performance control for parallel tasks (IT4I)
 - Change in the planning (type of nodes vs tasks RAM, GPU, disk, interconnect)
 - Large effort with limited gain, need to combine more approaches and implement it at large
- Optimisation goals
 - Effectivity (costs of the computational performance) FLOPS/kWh (GREEN500)
 - Carbon footprint
- Responsibility and PR
 - Green campus, energy data/research centers
 - Educations of users (reduce the unnecessary tasks, tests ...)
 - Carbon footprint (at least report carbon footprint)

Conclusions

- Large centers bigger effect (Northern Europe advantage)
- Distributed computed and storage infrastructure is a bit complicated area but might have geographically distributed effects
- Cooperation (Universities, Companies, Regulator/Operator)
- Costs vs benefits
- Education and support

Thank you

Questions?

