VOLCANIC ERUPTION IN LA PALMA

The Roque de los Muchachos Observatory experience

Carlos Martín Galán Juan Carlos Pérez Arencibia

IAC: Organismo Público de Investigación

- 1. Science & Innovation Ministry
- **Canarian Goverment** 2.
- La Laguna University (ULL) 3.
- 4. Spain's Science Research Council (CSIC).

3 locations & 2 Observatories

ORM

- Excellent Sky for Astronomy
- Well characterized and protected
- Internationally accredited

Mean Sea Level Pressure (mbar) CFSR

Where we are and why

<u>Gentle descent</u> of air from close to the Tropopause (~8-14km)

Adiabatic process: no heat is gained or lost

Stability and low humidity (and water vapour)

vertical velocities of 0.025 to 0.045 Pa/sec (yellow) (equivalent to ~2 to 4 mm/sec)

Graham, 2008

e-IRG workshop December 2021

The international dimension of Astrophysics

in Canary Islands

The sky is protected by Law. The Observatories are Astronomical Reserves

- Austria
- Belgium
- Denmark
- Finland
- France
- Germany
- Italy
- Japan

Mexico Norway

- Russia
- Spain

•

•

•

- Sweden
- The Netherlands United Kingdom USA

- Over the last 40 years more than <u>75</u> institutions of <u>25 countries</u> have installed their telescopes & instruments,
- >600 people working for Astrophysics in Canary Island
- Observatories foster international collaborations

TELESCOPES & FACILITIES

Location: Island of La Pali	ma (Canary Islands/Spain)
Altitude: 2.396 m.	Area: 189 hectares
Longitude: 17º52'34" West	Latitude: 28º45'34" North

Øcm		OWNER &/or OPERATOR	YEAR
20	Automatic Seeing Monitor (DIMMA)	IAC (ES), UN (FR)	2004
30	Automatic Seeing Monitor (RoboDIMM) Optical & IR Telescopes	STFC/ING (UK)	2007
40 x 4	GOTO	Un. Warwick (UK)	2017
45	DOT	DOT Foundation (NL)	1997
60	Optical Telescope	KVA (SE)	1982
97	SST	Un. Stockholm (SE)	2002
100	Warwick 1m	Un. Warwick (UK)	2014
100	JKT	IAC/SARA	2015
120	MERCATOR	KUL (BE) IS (BE)	2002
200	LT	LJMU (UK)	2003
250	INT	IAC/ING (ES)	1984
256	NOT	NOTSA (DK, FI, IL, NO & SE)	1989
350	TNG	INAF (IT)	1998
420	WHT	IAC/ING (ES)	1987
1,050	GTC	GRANTECAN (ES), Un. Florida (US) INAOE & UNAM, MX)	2008
	Cherenkov Telescopes		the states
	FRAM	Czech Academy of Sciences (CZ)	2017
300	FACT	FACT Collaboration*	2011
1,700x2	MAGIC I & MAGIC II	MAGIC Collaboration**	2005 & 2008
2,300	LST 1	LST Collaboration***	2017
	Cameras	JERCHART -	
Triber .	CILBO	ESA (International)	2011
19	AMOS-CI	CU in Bratislava (SK)	2014

Location: Island of Tenerife (Canary Islands/Spain)				
Altitude: 2.390 m.	Area: 50 hectares			
Longitude: 16°30'35" West	Latitude: 28º18'00" North			

Øcm	Instrument	Owner	Year Operational
20	Automatic Seeing Monitor (DIMMA)		2010
20	Microwave telescopes	ine (E9)	2010
40	GroundBIRD Experiment	RIKEN (JP)	2018
250x2	QUIJOTE I + II	IAC, IFCA & UnC (ES); UC & UM (UK)	2012 + 2014
	Optical & IR telescopes		
8	Earthshine	NJIT (USA)	2009
34	COAST	OU (UK)	2016
40x2	LCOGT-Teide Node	LCOGTN (US)	2015
40x2	MASTER	Sternberg Institute MSU (RU)	2014 & 2015
30x2 & 40x2	Optical Telescope Array	Telescope Society (US)	2015
40	PIRATE	OU (UK)	2017
40x1 + 45x2	MAGEC	OAM (ES)	
50	Mons Telescope	Un. Mons (BE)	1972
70	Vacuum Tower (VTT)	L-KIS (DE)	1989
80	IAC-80	IAC (ES)	1993
90	THEMIS	CNRS (FR)	1996
100	SONG	Un Aarhus (DK) IAC (ES)	2014
100	OGS	ESA (International)	1996
120 x 2	STELLA	AIP (DE)	2005 & 2008
150	Gregor (GT)	KIS, AIP & MPS (DE)	2014
155	Carlos Sánchez Telescope (TCS)	IAC (ES)	1972
	Solar Laboratory Instruments:		
	Integral Spectrophotometer: MARK-I	UB (UK) & IAC (ES)	1977
	GONG	NSO (US)	1996
	High Resolution Photometer EAST	IAC (ES)	2006
	Cameras:		
	CILBO	ESA (International)	2011
	AMOS-CI	CU in Bratislava (SK)	2014
	OFS	Ostar Research Foundation (OA)	2016

Scientific Impact 🔌 IAC

AÑO	PI	IR	CI	CN	т
2010	361	14	292	59	14
2011	367	24	245	30	2
2012	360	38	303	67	11
2013	356	33	250	55	10
2014	414	32	239	47	10
2015	439	17	387	15	16
2016	529	13	241	83	9
2017	596	27	176	20	18
2018	613	14	245	59	17
2019	531	13	196	43	17
2020	464	4	57	25	12

- PI: Publicaciones en Revistas Internacionales con Árbitro
- **IR:** Invited Reviews
- **CI:** Comunicaciones en Congresos Internacionales
- **CN:** Comunicaciones en Congresos Nacionales
- T: Tesis Doctorales

GRAN TELESCOPIO CANARIAS 10.4 m Largest optical/infrared single telescope in the world

>370 refereed publications (7 Nature + 2 Science)

CTA North on deployment

CTA (Cherenkov Telescope Array): large infrastructure for high energy gamma ray terrestrial astronomy. Once in operation, it will be the most advanced observatory in the world. It will improve ten times the precission and sensibility of current generation of Cherenkov telescopes

CTA consists of **two observatories** in **both Hemisphere**, a datacenter in Zeuthen (Germany) and headquarters in Bolonia. The North observatory of CTA is being constructed at ORM

CTA North at the ORM

- This infrastructure was included in the ESFRI roadmap of 2006 as an emergent project. In the update of 2008 it was updated as one of the 8 large project in Physical sciences and Engineering. After a revision between 2015-2017 it was granted the category of ESFRI Landmark in 2018
- In 2014 the legal entity CTA Observatory GmbH was funded. Currently it is the transition phase towards the **final legal form of ERIC**

Unión Europea Fondo Europeo de desarrollo Regional "Una manera de hacer Europa"

THE FUTURE: NEW TELESCOPES

New 4m Robotic Telescope

European Solar Telescope

EXTREMELY LARGE TELESCOPES

COVID-19 and the Telescopes Operation

GENERAL ASPECTS

- Staff mobility was affected
- Remote access was the main work mode
- We had to improve the capacity access to the network

REACTION

- Remote controlled and Robotic telescopes
 were no affected
- Other telescopes replicated control rooms in remote location
- Operation in service mode (local astronomers)
- Most of the staff "teleworking"

LA PALMA

Surface **708,32 km²** Perimeter **155,55 km** Altitude **2.426 m 14 municipalities** Population **83.548 inhab.** Density **117,9 hab./km²** GDP per cápita (est) € **20.402** Affected surface: 1,135 hectares Maximum width: 3,500 m between lava flows Evacuated persons > 7,000 No. of total buildings affected 1,548 Total area of affected farmland 350 hectares

18773

during Cumbre Vieja 2021 eruption

Bolein Oficial de Craniss ním 140

III. Otras Resolu

nsejería de Presidencia,

Lunes 19 de julio de 2010

La Norma Básica de Protección Civil, aprobada por el Rea Decreto 407/1992. de 24 de abril, dispone en su artículo 5 que los Planos Especiales se elaborarin para hacer frente a los risegos específicos cuya naturalezar enquiera una metodología técnico-científica adecuada para cada uno de ellos. Entre los risegos objeto de Planes Especiales, que se detallan en el artículo 6, constan los volcánicos.

En el supuesto de riesgos volcánicos, la Directriz Básica de Planificación de Protección Civil ante el Riesgo Volcánico fue aprobada por Acuerdo del Consejo de Ministros de 19 de enero de 1996, publicada mediante Resolución de 21 de febrero de 1996, de la Secretaría de Estado de Interior.

De acuerdo con lo dispuesto en los artículos 7 y 8 de la Norma Bisica de Protección Civil, los planes especiales cuyo ámbito territorial no execeda del de una Comunidad Autónoma seria aprobados por el Consejo de Gobierno de la Comunidad Autónoma, previo informe de la Comisión de Protección Civil de la Comunidad Autónoma correspondiente y deberán ser homologados por la Comisión Nacional de Protección Civil, homologación consistente en comprobar que los planes se acomodan al contenido y criterios de la norma básica.

Dichos planes podrán integrarse en el Plan Director de la Comunidad Autónoma, y establecerán los mecanismos de coordinación con los planes de ámbito estatal para garantizar su adecuada integración.

En el ámbito de la Comunidad Autónoma de Canarias, tiene el earácter de Plan Director el Plan Territorial de Emergencias de Protección Civil de la Comunidad Autónoma de Canarias (PLATECA), aprobado por el Decreto I/2005, de 18 de encro, en el que se establece el marco organizativo general para que puedan integrarse los planes especiales cuyo ámbito sea el de la Comunidad Autónoma, y cuyas directrices sigue el PEVOLCA para establecer las pautas de actuación necesarias para responder ante un posite riesgo volcánico.

La key 9/2007, de 13 de abril, del Sistema Canario de seguridad y Emergencias y de modificación de la 182 6/1997, de 4 de julio, de Coordinación de las Pacicas Locales de Canarias, ordena las competentas de la Comunidad Autónoma de Canarias en materia de seguridad pública mediante la organización del Sistema Canario de Seguridad y Emergencia, y de acuerdo con lo prevision en su artículo 28.e.), atribuye al Gobierno la competencia para aprobar los planes especielses.

En virtud de lo expuesto, visto el informe de la Comisión de Protección Civil y Atención de Emergencias de Canarias, de fecha 19 de enero de 2009, previa homologación por la Comisión Nacional de Protección Civil, acordada en la sesión de fecha 3 de diciembre de 2009, a propuesta del Consejero de Presidencia, Justicia y Seguridad y previa deliberación del Gobierno en su reunión del día 1 de julio de 2010.

DISPONGO:

Aprobar el Plan Especial de Protección Civil y Atención de Emergencias por riesgo volcánico en la Comunidad Autónoma de Canarias (PEVOLCA), que figura como anexo.

Contra el presente acto, que pone fin a la vía administrativa, cade interponer recursos potestativo de reposición ante el Gobierno, en el plazo de un mes a contar desde el día siguiente al de su publicación, o directamente recurso contencioso-Administrativo, del Tribunal Superior de Justicia de Canarias, en el plazo de os meses a contar desde el día siguiente al de su publicación; significando que, en el caso de presentar recurso de reposición, no se podrá interponer recurso cuencio-administrativo hasta ción o se produzca la desestimación presuma del mismo y tedo ello sin perjuicio de cualquier otro que pudiera interponerse.

Dado en Las Palmas de Gran Canaria, a 1 de julio de 2010.

> EL PRESIDENTE DEL GOBIERNO, Paulino Rivero Baute

EL CONSEJERO DE PRESIDENCIA, JUSTICIA Y SEGURIDAD, José Miguel Ruano León.

Plan Especial de Protección Civil y Atención de Emergencias por Riesgo Volcánico (PEVOLCA)

- 2010 Created
- 2011 First action entry
 - Tagoro submarine volcano
 - Island of El Hierro
- 2021 Current eruption in Cumbre Vieja

The IAC participates in PEVOLCA

as 'invited observer'

during Cumbre Vieja 2021 eruption

J.C. Carracedo³, H. Guillou², E.R. Badiola³, J.C.LINM⁴ and F.J. Pérez Torrado⁵ and paneta caree investor for the second se

Rift (*dorsal*) volcano: Cumbre Vieja

123 ka-present

Navarro and Farrujia, 1989

La Palma-South

Monogenetic volcanoes

Cinder cones Just one single eruption

Strombolian eruptions

Fluid lavas (*but less than Hawaiian*) Mild blasts Moderate pyroclasts emission

during Cumbre Vieja 2021 eruption

Main concerns at the Observatory:

• seisms M>4

- volcanic plume
- volcanic ashes

- Risk of impact by the plume breaking the Inversion level in the emission center depending on wind.
- Ash/gases diffused below the Inversion level

during Cumbre Vieja 2021 eruption

http://research.iac.es/volcano2021

VOLCANIC PLUME FROM CUMBRE VIEJA ERUPTION RISK OF IMPACT AT ROQUE DE LOS MUCHACHOS OBSERVATORY

DAILY REPORT 04 OCT - 18H UTC

							UTC hours			
	ост	02	AOD (AERONET)			High AOD values (0.3-0.4) in the afternoon.				
			PWV (IAC & AERONET)			High PWV (natural process).				
MENTS			DUST (TNG, GTC & Mercator)			Dust peaks (~150 µg/m³ 03h-06h). High values (~40 µg/m³ 06h-24h), coinciding with OT ('calima' event underway). High concentration of ultrafine particles (18h-00h).				
REI	ост	03	AOD (AERONET)			Moderate AOD values (0.2), descending in the afternoon.				
MEASU			PWV (IAC & AERONET)			Moderate PWV (natural process).				
			DUST (TNG, GTC & Mercator)			Dust levels slowly descending to ~10 $\mu g/m^3$ (all stations and OT). Natural 'calima' event is easing.				
	ост	04	00H-18H	PWV DUST	Dust values dropping to background (07h). Values at OT have also retu background. Still moderate natural PWV values. Low AOD values (08h)					
			06H-12H	-						
	ост	04	12H-18H	-						
			18H-24H	0		Leç	gend:			
ΔST			00H-06H	0		-	No data			
SEC/	ОСТ	05	06H-12H	0		0	Low risk			
Ğ	001	05	12H-18H	1		1	Minor risk of ash fall			
			18H-24H	1		2	Medium risk of ash fall			
	ОСТ	06	00H-06H	1		3	High risk of ash fall - outdoor work not recommended			
		00	06H-12H	2						

- Daily reports updated every 12 hours
- Dust and Aerosol Optical Depth can be indicators of the presence of ash.
- **Precipitable Water Vapour** may be used as a proxy of the presence of other **volcanic gases** (SO₂, e.g.)
- MOCAGE chemical transport forecast model
- (Modèle de Chimie Atmosphérique de Grande Echelle)
 - 500hPa (~5500m)
 - 700hPa (~3000m)
 - 850hPa (~1500m)
 - 950hPa (~500m)
- Other resources:
 - CTA and MAGIC LIDARs.
 - CHEMICAL COMPOSITION AND PETROLOGY OF ASH. (IGME-CSIC).

e-IRG workshop December 2021

during Cumbre Vieja 2021 eruption

Affected by the plume

72-hour PWV forecast

ORM (GNSS monitor () altitude: 2155 masl)

IAC PWV forecasting (ForO)

e-IRG workshop December 2021

during Cumbre Vieja 2021 eruption

Liverpool Telescope

Night Reports 2021

Observing robotically since 2004

O Home > Night Reports

Home

About

News

Night Reports

October 2021

IVE STATUS

Nov 21:00 UT

Enclosure CLOSED

RCW HOLD RCS Idle

		Date	Hours Used Comment		ł	Gammant	SkyCam	
		Date			ZP Plot	Movie		
		31 Oct	0.0	10.2	0.0	Volcanic ash risk.	-	
		30 Oct	0.0	10.2	0.0	Volcanic ash risk.	-	
		29 Oct	0.0	10.2	0.0	Volcanic ash risk.	-	
TUS	LATEST	28 Oct	9.3	0.0	0.9	Photometric, average seeing. Cassegrain and azimuth node errors just before morning.	Т	AT-
CLOSED	Operations suspended due to ash risk from nearby volcano.	27 Oct	10.2	0.0	0.0	Photometric, average seeing.	Т	AT-
RCS Idle		26 Oct	0.0	10.2	0.0	Volcanic ash risk.	-	
Report Archive		25 Oct	10.1	0.0	0.0	Photometric, average to poor seeing.		AT-
2019 - 2	2020 018 - 2017 - 2016	24 Oct	0.0	10.1	0.0	Volcanic ash risk.	-	
2015 - 2 2011 - 2	014 - 2013 - 2012 010 - 2009 - 2008	23 Oct	0.0	10.1	0.0	Volcanic ash risk.	-	
2007 - 2	006 - 2005 - 2004	22 Oct	0.0	10.0	0.0	Volcanic ash risk.	-	
	··· ··· ··· · ···	21 Oct	0.0	10.0	0.0	Volcanic ash risk.	-	
		20 Oct	0.0	10.0	0.0	Volcanic ash risk.	-	
		19 Oct	0.0	10.0	0.0	Volcanic ash risk. RISE repair.	-	
		18 Oct	0.0	10.0	0.0	Volcanic ash risk.	-	
		17 Oct	0.0	9.9	0.0	Volcanic ash risk.	-	
		16 Oct	0.0	9.9	0.0	Volcanic ash risk.	-	
	and the second	15 Oct	0.0	9.9	0.0	Volcanic ash risk.	-	
		14 Oct	0.0	9.9	0.0	Volcanic ash risk.	-	
-		13 Oct	0.0	9.8	0.0	Volcanic ash risk.	-	
-	No. of Concession, Name	12 Oct	0.0	9.8	0.0	Volcanic ash risk.	-	
6	the second	11 Oct	9.5	0.0	0.3	Non-photometric with good seeing. Cass node reeboot, Negative Torque limit.	Т	AT-
-		10 Oct	9.7	0.0	0.0	Photometric with good/average seeing.	Т	AT-
		9 Oct	9.7	0.0	0.0	Photometric with good/average seeing.	Т	AT-
-	Carl (8 Oct	8.3	0.0	1.4	Non-photometric with good/average seeing. Secondary mirror focus failure.	Т	AT-
Tal 2 - 2		7 Oct	9.7	0.0	0.0	Non-photometric with average seeing, plenty of high cloud.	Т	AT-
5		6 Oct	0.0	9.7	0.0	Volcanic ash risk	-	
		5 Oct	0.0	9.7	0.0	Volcanic ash risk	-	
		4 Oct	9.6	0.0	0.0	Photometric with good/average seeing.	Т	AT-
		3 Oct	9.6	0.0	0.0	Photometric with average seeing.	Т	AT-
		2 Oct	9.6	0.0	0.0	Photometric with average seeing.	Т	AT-
		1 Oct	0.0	9.5	0.0	Volcanic ash risk	-	

In the tables below, Observing, Weather and Technical refer to time spent observing, time lost to bad weather, and time lost because of

technical problems. Note that Observing includes time spent on calibration observations and, occasionally, scheduled on-sky test

observations; Technical does not include scheduled downtime (e.g. for planned engineering work).

Géant RedIRIS GÉANT IAC Network 0 RedIRIS – GÉANT node o RedIRIS node A Cádiz RedIRIS 🥂 🛙 🕅

Headquarters

- IAC general headquarter in La Laguna, Tenerife.
- Teide Observatory, Tenerife
- IACTEC Technology, Tenerife
- o CALP Sea level office, La Palma
- Roque de Los Muchachos Observatory, La Palma

Network features

- Wide Area Network, two islands, five sites.
- High capacity bandwidth 10G 100G
- Dark fiber to all sites.
- Private optical links to other international research institutions.

ISLAS CANARIAS

enerife

- MAGIC Telescope Institu de Fisica d'altes Energies (IFAE).
- SST Telescope The Royal Swedish Academy of Science
- GTC Gran Telescopio de Canarias GTC office
- SWASP , GOTO, W1M robotic telescopes Warwick University

Coming soon...

- Cherenkov Telescope Array CTA Port of scientific information (PIC Barcelona)
- Vacuum Tower Telescope VTT University of Freiburg

IAC Fiber Network

Important Weakness. Fiber paths are not redundant.

How long can operate our telescopes without connectivity? Some examples:

- GTC. 1-6 months saving data in local storage.
- Liverpool Telescope. (Robotic). 3-4 months in some instrument.
- SST. 2-4 weeks saving data in local storage.
- MAGIC. 4 days using local storage.
- TNG. Can use local storage, but they need internet for sky catalogues.
- GOTO-SUPERWASP. (Robotic) no operation without network for security reasons.
- JKT. (Remote controlled) do not operate without network.

High availability network projects

Redundant submarine fiber

Redundant land links

CONCLUSIONS

- COVID 19 CHANGED OBSERVATIONAL MODE CULTURE: Remote control, Service mode
- VOLCANIC ERUPTION:
 - Instrument protection to prevent volcanic plume damage
 - Strict Telescope operation according to Safety and Security conditions
 - Mobility also affected (some flights canceled by volcanic ashes)

"CONNECTIVITY IS A FUNDAMENTAL ASSET TO ENSURE THE OBSERVATORIES SCIENTIFIC OPERATION" "TO GUARANTEE SCIENTIFIC FACILITIES RESILIENCE, WE ARE PLANNING HIGH AVAILABILITY NETWORK PROJECTS"

RESILIENCE

Carlos Martín Galán (carlos.martin.galan@iac.es)

Juan Carlos Pérez Arencibia (jcperez@iac.es)

