

OpenQKD European Quantum Key Distribution Testbed Florian Fröwis

Helsinki, December 2019

ID Quantique company profile

Founded in 2001

Seoul, South Korea

Bristol, UK

Boston USA

By 4 quantum physicists from the University of Geneva

95 employees including ~45 engineers/scientists

Investments in 2018 by SK Telecom & Deutsche Telekom

Develops technologies and products based on quantum physics & photonics within 2 business units:

- Quantum-Safe Security
- Quantum Sensing

Performs R&D, production, sales, professional services, integration, support

Clients: Governments / Banks / Gaming Industry / Universities / IT Security / O&G / Telecom

Cryptographic Toolbox: Simplified Overview

Symmetric Cryptography

(secret key)

Asymmetric Cryptography

(public key)

Cryptography before and after Quantum Computing

The hacker's point of view today...

... and after the Quantum Computer

IDQ Recommended Path to Quantum Safety

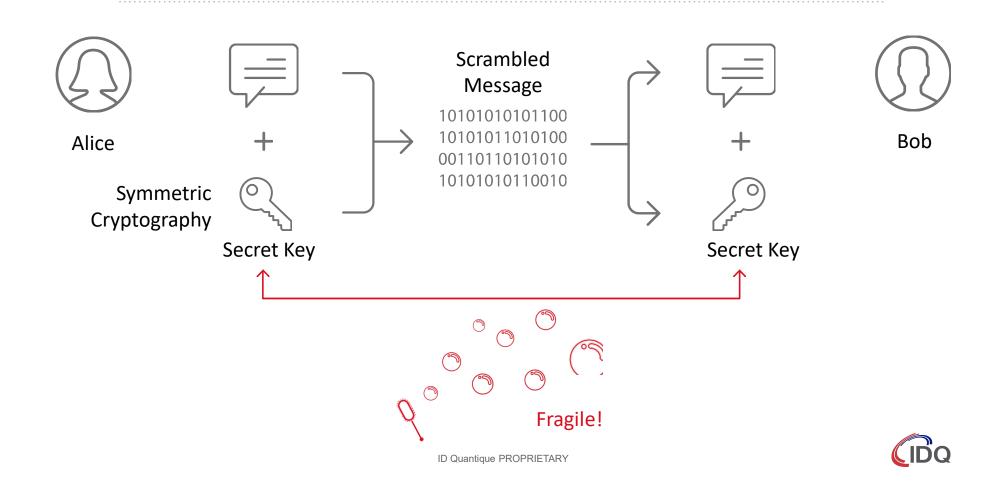
Quantum Random Number Generation (QRNG)

- ✓ Instantly strengthen your crypto key material
- √ Feed higher quality (Swiss trusted) entropy into key generation servers, HSMs, Linux & crypto applications and connected devices

Crypto agility to move to Post Quantum Crypto

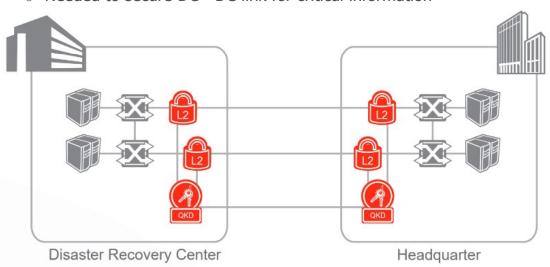
- ✓ Be crypto-agile to move to next generation Post Quantum Crypto
- ✓ Be QKD ready (ready to upgrade to quantum cryptography)
- ✓ Protect your investments for the next decade and further

Quantum Key Distribution (QKD)


- ✓ Quantum Cryptography for secure transmission
- ✓ Provide forward secrecy & anti-eavesdropping of private key exchange/back up
- ✓ Ensure Information Theoretic Security for confidentiality to guarantee ownership for the next decade (Post-Quantum era)
- \checkmark Use QKD today for backend **IP protection**

Quantum Key Distribution (QKD): Basic Idea

QKD in Data Center Interconnect



Quantum Cryptography-secured data center link

Business need

- Atos (ex Siemens) acted as managed service provider for a leading financial client
- Needed to secure DC DC link for critical information

Market Turning Point in 2015-2016

Call for Proposals

- NIST is calling for quantum-resistant cryptographic algorithms for new public-key crypto standards
- Digital signatures
- Encryption/key-establishment
- We see our role as managing a process of achieving community consensus in a transparent and timely manner
- We do not expect to "pick a winner"
 Ideally several algorithms will amore as 'good shole
- Ideally, several algorithms will emerge as 'good choices'
- We may pick one (or more) for standardization
 Only algorithms publicly submitted considered

we may pick one (or more) for standardizatio

Only algorithms publicly submitted considered

China and CAS Quantum Network

National Quantum Secure Communication Backbone Network (Phase I, 2018~2020)

Coverage area

Total Distance: ~ 11000 km

Backbone network: ~ 8000 km

City access network: ~ 3000 km

Main function

Serve for national strategy

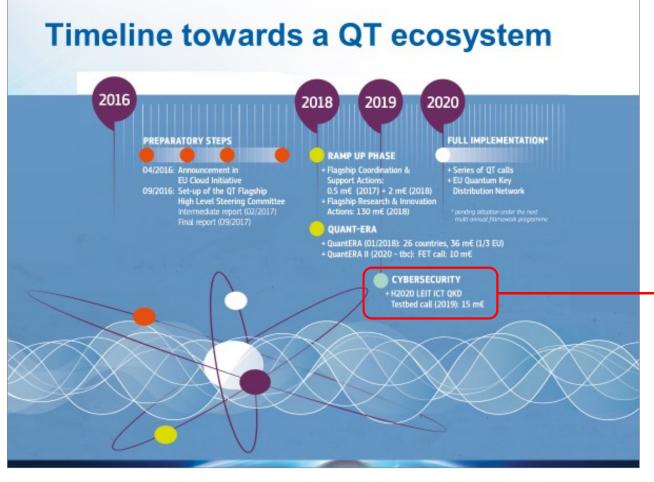
Integration in Jing-Jin-Ji Area

The Yangtze Economic Zone

The Belt and Road Initiative, and etc.

Serve for financial sectors and governments

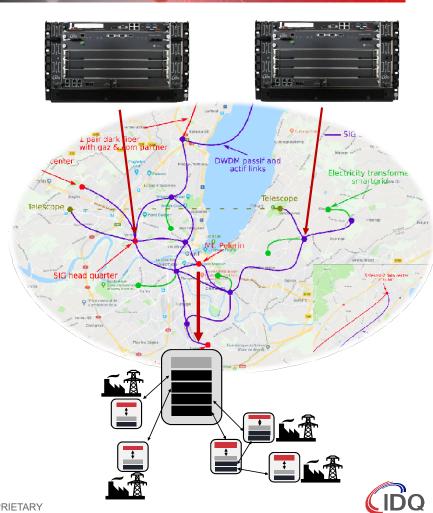
Explorer applications in education and medical fields



QT Vision in Europe

Quantum Flagship (qt.eu) 1B€ for Quantum Technologies (2018-2027)

Testbed – 15M€ - 2019-2022



Scope of OpenQKD

SWISS QUANTUM[®] (KD

- System development
- Network integration
- Use case testing and evaluation
- Further objectives
 - o Innovation for European QC ecosystem
 - Collaboration and open source solutions
 - Prepare pan-European quantum communication infrastructure

Improvements on system level

Fibre-based: high TRL

- Cost of ownership I:
 - Smaller
 - Cheaper components (integrated photonics)
 - "Plug and play"
- Increase of distance from ≈50km to ≈150km
- Increase rate from kb/s to Mb/s
- Device independent

Free-space: low TRL

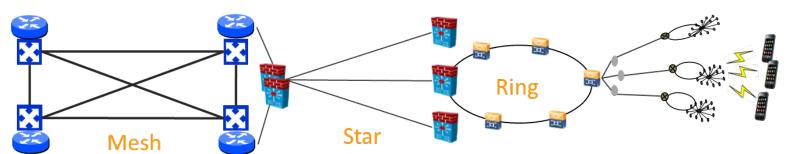
Proof of concept

Cerberis 3: COW protocol, ATCA chassis

Quantum Access Network (Short-Range)

- 19" 6U chassis
- Maximum transmission loss (typ.): 12dB (Premium 18dB upon availability)
- Secret key rate (typ.): 3 kb/s after 50 km

Modern communication networks



Backbone

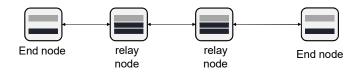
Core

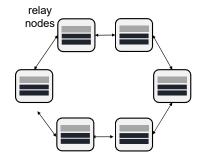
Access

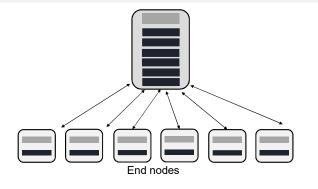
Quantum Key Distribution

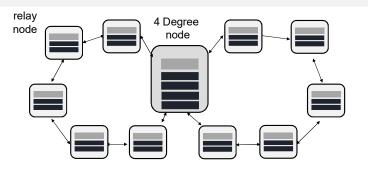
ID Quantique PROPRIETARY

Examples of QKD network topologies





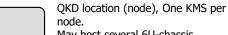

Point to point (with relay for long distance)


Ring network

Hub and spoke

2-Ring network

ID Quantique PROPRIETARY



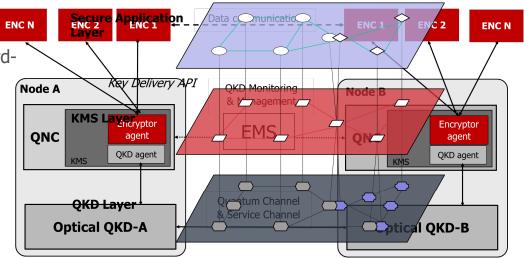
Quantum channel (dark fiber or wavelength in O-band)

KMS Channel (logical mux possible)

Service channel (C-band)

May host several 6U-chassis depending on degree (number of optical blades)

Network integration

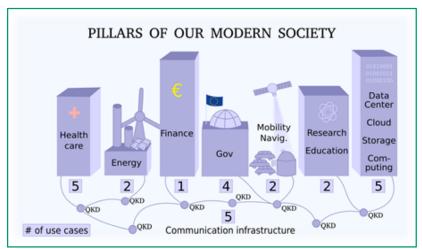


Total cost of ownership II:

 Multiplexing of QKD signals on fibres with thirdparty traffic

- Interoperability
 - Between QKD and encryptors
 - o Between QKD links from different vendors
- →Standards
- Key management system → SDN
- 5G (network slicing, ...)
- Different network topologies

Use cases

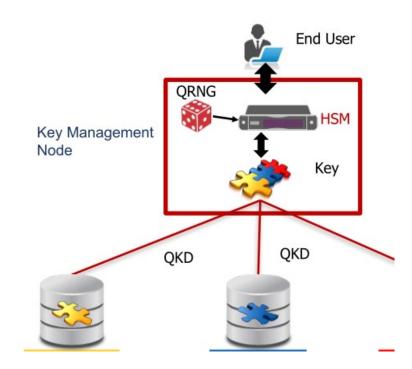


Operation of use-cases deriving from Secure Societies needs

- Demonstration of more than 30 use-cases for QKD featuring:
 - realistic operating environments
 - o end-user applications and support

Range of use-cases:

- Secure and digital societies
 - Inter/Intra datacenter comm., e-Government, High-Performance computing, financial services, authentication and space applications, integration with post-quantum cryptography
- Healthcare
 - Secure cloud storage services and securing patient data in transit
- Critical infrastructure
 - QKD for telecom networks, 5G infrastructure and securing smart grids


Use case example

Quantum Vault (deployed in Geneva)

- End User wants to securely store a cryptographic asset: protecting against failures and attacks
- Key enabling technology
 - Quantum Random Number Generation (QRNG) to guarantee a perfectly random and unpredictable key
 - Shamir Secret Sharing Protocol for secure backup without duplication of the asset; protecting against single point of failure
 - o Quantum Key Distribution (QKD) to distribute key elements
- Implementation partner: Mt Pelerin ("blockchain bank")
- Role of IDQ
 - Co-development of use case
 - Provision of QRNG and QKD systems
 - Consulting and technical support

OPENQKD eco system

Suppliers of network encryption

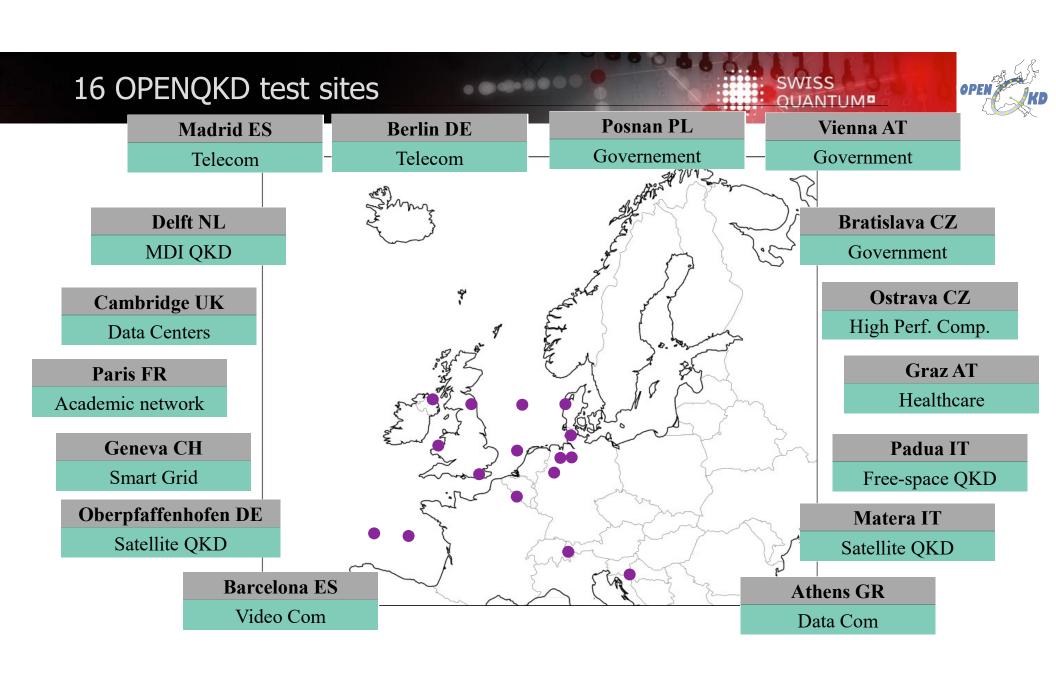
Fiber infrastructure operators

Telecom operators

Aerospace and satellite industry

Standardisation institutes

Early adopters



OPENQKD Metadata

Call:H2020-SU-ICT-2018-3, Innovation action

Topic: SU-ICT-04-2019 Quantum Key Distribution testbed

Grant Agreement No.: 857156

Estimated project cost: ~18M Requested EU Contribution:

~15M

Start Date: 02 September 2019

Duration: 36 months

13 EU and associated countries: AT, BA CZ, DK, FR, DE, IL, IT, NL, PL, ES, CH and

UK

Coordination:

AIT Austrian Institute of Technology

Partners: 38

Let's stay entangled ...

Send an email to 🛉 alice@openqkd.eu or 🕆 bob@openqkd.eu

Follow us https://twitter.com/openqkd | @openqkd

Connect with us www.linkedin.com/in/openqkd | OPENQKD Project

Find information https://opengkd.eu/

For more information http://www.idguantique.com/