

SPHN: Building an interoperable environment for biomedical research in Switzerland

Thierry Sengstag SPHN/BioMedIT node head, SIB - Swiss Institute of Bioinformatics and University of Basel

on behalf of, and with contributions from: SPHN Data Coordination Center BioMedIT nodes (University of Basel, ETH-Z, SIB) e-IRG Workshop, CERN 21 May 2019

Bridging the gap between data science and health

Rationale

Homo sapiens is now the best characterized model organism for biomedical research

- More data collected in hospitals than in any biomedical research project
- Healthy citizen data increasingly collected with smart mobile technologies Large, complex datasets require advanced data science techniques
- Computing infrastructures and methodologies

How to leverage these data ethically, legally and efficiently for the benefit of patients, citizens and the society?

A national initiative to promote research in Personalized Health

Proposed in 2014, started in 2017

Partners: university hospitals, schools of higher education, research institutes, and other organizations

Mandated by the SERI (SBFI), co-mandated by the FOPH (BAG)

BioMedIT

Create secure environment to work with human data in Swiss academic institutions

BioMedIT network coordinated by SPHN DCC (mandate to SIB)

IT infrastructure and project support

- Core-IT (SIB, Lausanne)
- sciCORE (University Basel)
- SIS (ETHZ)

Data infrastructure

• HES-SO (Geneva)

Project support

• **S3IT** (University Zurich)

SPHN, BioMedIT, PHRT

Biomedical research Healthcare-oriented

Bioinformatics IT Research-oriented

Strategic Focus Area Personalized Health and Related Technologies

Healthcare technologies Applications-oriented **SPHN**: a SAMW/SIB project with the aim to **promote the development of personalized medicine/health in Switzerland**

BioMedIT: an SIB project with the aim to **create** an IT environment for research with biomedical data in academia

PHRT: an ETH project with the aim to **develop new technologies in support of personalized health**

BioMedIT focus: infrastructure

SPHN/BioMedIT – integrating hospital data for research

Anchoring developments in actual research needs

To develop and implement the required infrastructure, SPHN funds the the following project types:

Project type	Description	Funding scheme
Infrastructure implementation projects	Projects that are devoted to build a progressive shareable data system enabling nationwide interoperability of molecular and clinical patient data.	Collaboration agreements
Infrastructure development projects	Projects that thrive to develop and test new technologies, methods and infrastructures for personalized health related research in connection with infrastructure implementation.	Call for proposals*
Driver projects	These projects are based in a concrete research field (e.g. cancer research/oncology) and will push the development of clinical data management systems in all University Hospitals by testing data interoperability & data sharing principles within the whole network.	Call for proposals*

*Coordinated call for proposals with ETH- Domain SFA-PHRT: Joint proposals between ETH researchers and non ETH researchers can be submitted for both type of projects.

Driver projects (call 2017)

k A	Swiss Frailty Network and Repository Heike Bischoff-Ferrari
Y	Population-wide screens of the human immune repertoire: a reverse personalized-medicine approach (CCIP) Adriano Aguzzi
	Swiss Molecular Pathology Breakthrough Platform (SOCIBP) Mark Rubin
A	Swiss Personalized Oncology (SPO) Olivier Michiélin and Mohamed Bentires-Alj
\bigcirc	PRECISE: Identification of biomarkers and therapeutic targets in inflammatory disease immunotherapy by high-dimensional single cell analysis and cluster proteomics Manfred Claassen
SEPS S: Every Second Counts	PSSS: Personalized Swiss Sepsis Study: Detection and modelling of sepsis using machine learning to analyse continuous ICU monitoring, laboratory, microbiology, and -omics data for personalized sepsis management. Adrian Egli

+ 8 infrastructure development projects

Domains: patient-data governance, e-consent management,

data de-identification, NLP processing of patient records, variants database (oncology)

Driver projects (call 2018)

	SACR: The Swiss Ageing Citizen Reference Nicole Probst
*	CREATE PRIMA: Clinical Research from multi-modality big data sources without proprietary interfaces in a multicenter approach Joerg Leuppi
	IMAGINE: Radiomics for comprehensive patient and disease phenotyping in personalized health Matthias Guckenberger
	SOIN: Swiss Ophthalmic Imaging Network Thomas Wolffensberger
\$ \$	SHFN: SWISSHEART Failure Network Christian Matter, Johachim Buhmann

+ 5 infrastructure development projects

Domains: variants database (non-oncology), reference datasets, QC metrics in radiology, secure distributed computing algorithms

Hospitals (and supporting platforms)

- Make patient data discoverable (aggregated queries, semantics)
- Use harmonized processes (contracts) for data exchange

Research organizations

- Establish IT infrastructure adhering to common security standards
- Establish interoperable services (data management and compute) in support of biomedical research
- Make IT infrastructure available for any research project in Switzerland

Researchers (with SPHN funding)

- Help building the infrastructure:
 - by providing real-life research use cases
 - by committing to use the infrastructure

BioMedIT project organization

1

IT security consensus

Biomedical data are sensitive

Subject to data protection laws and strong ethical requirements Consensus required between healthcare providers and research organizations

Regulations applicable to biomedical research

Switzerland:

- Federal Act on Data Protection (SR 235.1)
- Federal Data Protection Ordinance (SR 235.11)
- Human Research Act (SR 810.30)
- Human Research Ordinance (SR 810.301)
- Swiss Penal Code (SR 311.0)

State:

- Data access conditions
- Scope of usage context (informed consent)
- General processes of data management
- Consequences in case of misconduct

European Union:

• General Data Protection Regulation (Regulation (EU) 2016/679)

Impact on Swiss regulations anticipated

SPHN information security framework

Initial workshop 12-13 December 2017

Stakeholders:

- Hospitals IT security officers
- Industry consultants
- Academic research IT

Published: 23 August 2018

Swiss regulations

- Federal Act on Data Protection (SR 235.1)
- Federal Data Protection Ordinance (SR 235.11)
- Freedom of Information Act (SR 152.3)
- Human Research Act (SR 810.30)
- Human Research Ordinance (SR 810.301)
- Swiss Penal Code (notably Art. 321bis, SR 311.0)
- SPHN Ethical Framework

EU regulations

 General Data Protection Regulation (Regulation (EU) 2016/679) (or the Directive 95/46/EC until May 24, 2018)

IT security management standards

- ISO/IEC 27001:2013 Information Technology Security Techniques – Information security – management systems – requirements
- ISO/IEC 27002:2013 Information technology Security techniques — Code of practice for information security controls
- NIST Cybersecurity Framework

Swiss Personalized Health Network

SPH

SPHN Information Security Policy

Secure authentication

- Reference researcher identity provider with institutional control (e.g. Swiss EDU-ID)
- Two-factor authentication

Secure data transfers

Encryption specifications

Secure storage

- Unix group-based access control
- Physical infrastructure access control
- Encryption of inactive data (e.g. backups)

Auditable processes and incident reporting

- Data and infrastructure access logging
- Mandatory reporting of incidents (processes)

User awareness

- Data Use Agreement
- Training

SPHN Information Security Policy

Public: information shared and available outside of SPHN.

Internal: information that may be shared within SPHN. This information is not intended to be shared outside SPHN and respective projects/initiatives. The impact of the information leaking outside of SPHN would be minor.

Confidential: the access to this information must be restricted only to those parties within SPHN that have a legitimate need to have access to it. All personal data (either identifying data or pseudonymized) are confidential. The impact of leaking this information to parties with no legitimate use or to the public may cause major harm to the person from whom the data originate, to the original Data Provider (Controller), to the research organization, or to SPHN.

IT infrastructures for biomedical research

BioMedIT infrastructures goals

Regulations

- Legal
- Ethical
- Best Practices
- CH, USA, EU

Easy to use

- As on the notebook
- No security hassles
- Free access to the Net
- Interactive

High Performance

- Fast Network
- GPUs
- Parallel Filesystems

Flexible

- Fast changes
- Cutting edge software
- State full nodes
- DB servers

EHzürich

Leonhard Med > Security + Usability

sciCORE Med - BioMedIT architecture

Core-IT BioMedIT Architecture

SIB Lausanne

Logical layout

Slide credit: Roberto Fabbretti, Vital-IT

Interoperability

Network interoperability challenge

2017-2020 5 University hospitals 3 Research IT infrastructures 2 ETH platforms 10+ additional partners (cohorts, regional hospitals, ...)

SIB

Swiss Institute of Bioinformatics

Data transfers

Swiss

Network

SPHN

Personalized Health

- Channel encryption
- Project-specific encryption

Semantic challenge: Hospital data heterogeneity

Type of data: (low degree of data quality, high numbers, large heterogeneity)

Data semantics

Core terms defined through SPHN Driver projects Call 2017

- Oncology
- Sepsis (intensive care)
- Immune repertoire
- Ageing

SPHN semantic interoperability WG coordinates:

- Across hospitals
- Across domains

Core vocabularies

- SNOMED CT
- ICD-10, ICD-0
- LOINC

Swiss

Health

SPHN

Network

Personalized

Hospitals data discoverability

- Supporting reproducible research
 - Repeatable data analysis (same data)
 - Reusable in different context (different data)
- Workflows executable everywhere
 - Work with local data

Swiss Institute of Bioinformatics

Swiss

SPHN

Personalized Health

Network

Virtualization technologies

Source: Greg Kurtzer, Singularity Containers for Science

Docker

- Widely used
- Security issues (commonly unsupported in HPC environments)
- Federation and orchestration tools (Kubernetes, Swarm)
- Docker Hub repository
- Built-in support from cloud providers

Singularity

- More secure to run than Docker in multi-user environment
- Out of the box support for GPU's and other hardware
- Can pull Docker images and convert to Singularity
- Singularity Hub repository
- Convenient default data mounts

Swiss

SPHN

Personalized Health

> Swiss Institute of Bioinformatics

Network

• Pros:

• Cons:

- Pros:
 - One image
- Cons:
 - Potential incompatible dependencies
 - Large image size
 - Changing individual components tricky

Workflow system must be supportedReproducibility concerns

Containers can be mixed and matched

Slide credit: Kevin Sayers, SPHN DCC

Enabling edge computing

"Bringing the algorithm to the data"

Securely transfer data to a BioMedIT node for analysis

Provide single sign on (SSO) to access BioMedIT nodes where data is located

Federation that abstracts the underlying BioMedIT infrastructure

BioMedIT Project status

Regulations

- SPHN Ethical framework (2017)
- SPHN Information Security Policy (2018)

IT infrastructure

- Infrastructure implementation ongoing on different sites (Zürich,
- SIONIEOI I EIIVII UIIIIEIII USAUIE IUI FOODUCTION in 2020 Support to SPHN/PHRT projects ongoing (preparatory phase)
- Identity federation in development (Swiss EduID)

Workflow interoperability

- BioMedIT environment usable for pilots. Proof-of-concept workflow interoperability completed (genomics)
- Workflow infrastructure (e.g. container repositories) and standards in development
- Workflow federation in development

Data interoperability

- Proof-of-concept node-to-node data transfers completed
- Technologies to link hospitals tested
- Key infrastructure, registries and automation in development
- Data catalogs, secondary data reuse in early development

Collaborations

Outlook into 2021-2024

- Extend network to regional hospitals and private clinics
- Expand range of data collected (hospitals and platforms), consolidate semantics
- Integrate healthy citizen data
- Strengthen role of ELSIag and foster engagement of patients and citizens
- Establish PPPs (public-private partnerships) and international consortia
- Establish concepts for sustainable national center for PH research post 2024 (governance and technology)

SPHN / BioMedIT

https://www.sphn.ch/ https://dcc.sib.swiss/

Documents SPHN Glossary SPHN Ethical Framework SPHN Information Security Policy SPHN Data Use Agreement Template

Acknowledgements

Key input for this presentation

Kevin Sayers (SIB, DCC) Diana Coman Schmid (ETH) Christian Bollinger (ETH)

SPHN/BioMedIT DCC

Katrin Crameri (chair), Torsten Schwede Leila Alexander Martin Fox Sabine Österle Kevin Sayers

BioMedIT interoperability team

Kevin Sayers (DCC) Sergio Maffioletti (Uni Zürich) Jaroslaw Surkont (Uni Basel) Jorge Molina (Vital-IT) Diana Coman Schmid (ETH)

BioMedIT nodes and board members

Bernd Rinn, Thomas Wüst, Leonhard Med team (ETH) Heinz Stockinger, Roberto Fabbretti, Core-IT/Vital-IT teams (SIB) Sofia Georgakopoulou (Uni Basel)

Christine Durinx (SIB) Patrick Ruch, Douglas Teodoro (HES-SO) Marcel Riedi, Sergio Maffioletti (Uni Zürich)

BioMedIT network collaborators

University hospitals, represented by: Christian Lovis (HUG, also chair semantics) Nicolas Rosat (CHUV) Alexander Leichtle (Insel) Markus Obreiter (USB) Roland Naef, Cornelia Kruschel-Weber (USZ) All PIs and collaborators of SPHN projects

Questions?

Supporting slides

"Cloud-of-services" federation

- Middleware-infrastructure agnostic (OpenStack, OpenNebula)
- Harmonization at the level of services

Project management (registry)

Identity and access control

Data access and data management

Workflow execution

GDPR overview

European Council Council of the European Union

pages)

(261

Regulation

GDPR

The General Data Protection Regulation

(GDPR) imposes new rules on organizations that offer goods and services to people in the European Union (EU), or that collect and analyze data tied to EU residents, no matter where they are located.

- **Enhanced** personal privacy rights
- Increased duty for protecting data
- Mandatory breach reporting
- **Significant** penalties for non-compliance

GDPR overview

BioMedIT data transfer protocol

SPHN/BioMedIT data flows

Even if there is no mali

functions as ex

TECHNOLOGY

Hackers mined \$90,000 worth of Monero with a simple Docker Hub trick

container image data damned

Kromtech finds malicious code hiding in enterprise

vpstart's repositories of software

By Thomas Claburn in San Francisco 14 Jun 2018 at 07:01

3 🗔 SHARE V

ZUIO-UD-IZ I BY SECURITY CENTER

- Host a private SPHN repository
 - Local Gitlab can be used to build the images
- Utilize tools that scan repositories for image vulnerabilities
- Manual review of Dockerfile or Singularity files
- Container signing from developers

- Representative bioinformatics workflow in a Singularity container
- Demonstrated functionality in BioMedIT nodes
- Demonstrated analysis reproducibility
- White paper available

Collaboration: ETHZ, Uni Basel, Uni Zürich, Uni Bern, SIB

EnhanceR Singularity test matrix

SIB Swiss Institute of Bioinformatics

÷

Milestone	UniBe	sciCORE UniBas	S3IT UZH	Vital-IT / SIB	SIS ETHZ
Singularity installed	🕑 (V2.3)	0	✓ v2.3-dist	(v2.2.1 and v2.3)	✓ (V2.3)
"hello world" pipeline building	0	•	0	(from Dockerfile)	(from Dockerfile)
"hello world" pipeline running	0	•	0	 (from Singularity image) 	0
sciCORE pipeline1 & pipeline2 building	0	0	0	0	 (from Dockerfile)
sciCORE pipeline1 & pipeline2 running	0	0	-	 (only pipeline 2, pipeline1 is too big to run in home directory (quota issue)) 	0
Docker -> Singularity conversion via Dockerfile	 (with"hello world" pipeline) 	0	0	 (with SIB-publications pipeline) 	 (with"hello world" pipeline)
Docker -> Singularity conversion via Dockerhub	 ♥ (with "whalesay" container) 	 (with custom Dockerfiles for pipeline1 & pipeline2) 	oldracklab/fmriprep	not planned	 (with "whalesay" container and custom Dockerfiles)
Docker -> Singularity conversion via "private" <u>Gitlab</u>	 (with "hello world" pipeline, no auth) 	•	-	not planned	 (from private GitLab)
Runner script	(pipeline.py)	⊘ (pipeline.py from UniBe)	-	 (own runner script, tested with SIB-publications pipeline) 	 (pipeline.py from UniBe)
Guideline document	0	•	0	 all details are in: README.md and in final report 	0