

The growing challenges of big data in the agricultural and ecological sciences

chris.rawlings@rothamsted.ac.uk

Head of Computational and Systems Biology

'Demand for food is projected to increase by 50% by 2030 and double by 2050'

Rothamsted Research

- Rothamsted is an independent scientific research institute
- Longest running agricultural research institute in the world (est. 1843)
- Delivering knowledge, innovation and new practices to increase crop productivity and quality
- Develop environmentally sustainable solutions for agriculture

Main funder

- From Genotype to Phenotype data
- Environmental data
- Modelling and simulation
- How does this all change how biology is done and what biologists need to do?

Data Rich Interactions in Agri-Ecology

ELIXIR

AnaEE

- Next generation sequencing
 - Genomes of host organisms
 - Large and complex
 - Genomes of pest and pathogen organisms
- Managing / integrating multi-omics datasets
 - Variety of data resources
 - Transcriptomics and metabolomics most important
 - Importance of model organisms
 - Range of data types
- Measuring phenotypes and traits
 - Until now low throughput
 - Now moving to high throughput
 - Range of automation and imaging technologies
- Measuring the environmental factors
 - affecting agricultural production
 - Increasing sustainability of agriculture

ISBE

Modelling interactions and dynamics of biological systems at all scales

- Each individual has same genes but is defined by variations
 - Each individual organism has a genotype
 - Described by the set of genes and associated polymorphisms (SNPs, rearrangements)
- Each individual organism has:
 - Phenotype(s)
 - Observable characteristics shape, colour
 - Behaviours
- Phenotype is influenced by **environment**
 - Particularly in the case of plants sessile

Measuring phenotypes and traits

- Measuring phenotypes and traits
 - Until now low throughput
 - Now moving to high throughput
 - Range of automation and imaging technologies
- Measuring the environmental factors
 - affecting agricultural production
 - Increasing sustainability of agriculture

Crops - Phenotype

- Agronomic
 - Crop yield
 - Total biomass
- Plant Morphology
 - Architectural macro-measurements
 - E.g. stem number, height, thickness, root structure
 - Light Interception canopy
 - Non-destructive and destructive methods
- Biophysical and Biochemical
 - Photosynthesis
 - Tissue composition e.g.
 - Lipid content
 - Sugars bioethanol
- Environmental factors
 - Weather
 - Soil moisture
 - Treatments (nutrients, pest management etc).

Relating genotype to phenotype

Genetics

- Studies of disease families
- Population studies (association genetics)
- Crop breeding populations
- Originally genetic markers
- Now genotyping by sequencing

Relating genotype to phenotype

ROTHAMSTED

Transcriptomics

- Every gene transcript represented on a microarray
- Measure level of expression across genome in different cell types
- Now done by RNA-Seq another use of Next Generation Sequencing
- Variations of these and combinations of these studies

GeneChips

Range of Plant and Crop 'Omics Data

- Automated measurements
- Exploit high resolution, multi-spectral cameras
- Image processing, computer vision techniques
- Non-invasive
- Measurements e.g.
 - Plant growth and development
 - Photosynthetic activity
 - Stress measurements

National Plant Phenomics Centre

A new facility, unique in the UK, will employ a combination of robotics, automated image analysis and genomics to understand how plant growth is genetically controlled

http://www.aber.ac.uk/en/media/Example-of-Research---National-Plant-

Phenomics-Centre.pdf

Australian Plant Phenomics Facility *Field Based Technologies*

Phenomobile

http://www.plantphenomics.org.au/

http://www.plantphenomics.org/hrppc/capabilities/fieldmodule

Remote Sensing – Hyperspectral Imaging

Nitrogen, herbicides and disease

NDVI mapping from UAV (Normalized Difference Vegetation Index)

http://cadair.aber.ac.uk/dspace/handle/2160/2940

New Trend - Quantitative data from images

Merged Three-Channel Image

Distributed research infrastructure model for Euro-Biolmaging

Euro-Biolmaging HUB

coordination & support access, data, training, <u>European infrastructure</u> management

FLAGSHIP TECHNOLOGY NODES

offer an innovative technology at European leading level

MULTIMODAL TECHNOLOGY NODES

provide excellence by integration of multiple imaging technologies at one site

High Content Screening

- Multi well robotics
- Live cell imaging
 - Advanced image management and analysis software
- Dynamic and spatially resolved quantitative data
- Multispectral Confocal microscopy
- e.g. Perkin Elmer Opera System
 - Developed for pharmaceutical industry to screen cell cultures for new drugs
 - Applications in plant science emerging
- 100,000 image sets per day

- Crops for the future will be based on advanced research and breeding using molecular methods
- The genome sequencing and other 'omics technologies are creating a data deluge
- Distributed in centres around globe particularly so for of agricultural species
- Next data tsunami coming from image based technologies used in high throughput phenotyping
- Being used at all levels of biological and geographical scale
- Obvious challenges inherent in data integration, analysis and visualisation

Rothamsted Research where knowledge grows

Agricultural Interactions with the Environment

Delivering sustainable intensification

- The demands on land for food production are increasing
- New management methods needed to increase intensity of agriculture
- Challenge is to do this without significant harm to environment
 - Sustainable intensification
 - Intelligent management of agricultural ecosystems
- Be ready for climate change

AnaEE

A European infrastructure for analysis and experimentation on ecosystems

http://www.anaee.com/

Challenges facing Europe and the world

Our strategic objectives

Foster capacity building in ecosystem science by providing state of the art facilities and structuring the research community

High-quality scientific data and services to assess impacts and risks associated with environmental changes

Help develop policies and engineer techniques that will allow buffering of and/or adaptation to these changes

Contribute to developing a **21**st century bioeconomy

Our approach

Our Model

- A world-class distributed experimental infrastructure for enabling ecosystem research
- A coordinated set of experimental platforms across Europe to analyse, test and forecast the response of ecosystems to environmental and land use changes.
- ANAEE will be the key instrument for carrying out terrestrial ecosystem research within the European Research Area.
- Scale: Europe including full range of Europe's ecosystems and climate zones
- Wide range of environmental and societal implications for policymakers

Modeling Platforms

In Vitro Platforms

Rothamsted Research

where knowledge grows

Rothamsted North Wyke Farm Platform

Example AnaEE Site

Main features

- Three "farmlets"
- Highly instrumented
 - Most instrumented farm in Europe(?)
 - Realtime data capture from 15 monitoring stations
- Known topology and hydrology
- Long term experiments just starting
 - Baseline data 2 years
- Integration with remote sensing data
 - Satellite, hyperspectral imaging

PARSONS et al. (1991) Uptake, cycling and fate of nitrogen in grass-clover swards continuously grazed by sheep. J. Agric. Sci., Camb. 116, 47-61.

JARVIS et al. (1991) Micrometeorological studies of ammonia emission from sheep grazed swards. J. Agric. Sci., Camb. 117, 101-109.

Possible AnaEE Service structure

Characteristics of A-E Data

- Very wide range of studies
 - Different objectives, different data
- Widely Different Scales
 - Spatial : lysimeter catchment
 - Temporal : realtime annual
- Different Types of Environment
 - Controlled (mesocosm), Managed, Natural,
- Different geographical locations

Challenges - Integration/Interoperability

- Many competing standards
- Metadata not been considered in many situations
 - Metadata standards poorly developed

Rothamsted Research

where knowledge grows

Modelling and Simulation

Systems Biology

Two approaches

- Study all components of a biological system/organism
 - Integrative approach
 - Understand interactions
 - Link interactions to phenotypes to identify emergent properties of the network
- Systems Engineering appriach
 - Build computer and mathematical models
 - Generally associated with biochemical pathway modelling
 - Create simulations
 - Well developed examples in single cell organisms
 - Yeast, Bacteria
- Biology should become more like physics and amenable to engineering approaches
 - Physicists conduct experiments to test models
 - Predict phenotype from genotype

- An infrastructure for the integration and synthesis of systems biology across the Data Generation, Integration and Stewardship Centres identified by the project.
- The distributed, interconnected infrastructure using
 - best practices,
 - standards,
 - technical infrastructure,
 - software
 - capacity for data
 - model management and distribution.
- To propose and promote a framework and best practices for model and data management for Systems Biology in Europe.
- To collaborate with standardisation activities for model and data management

Modelling and Simulation Equally Important in Agro-ecology

- Agro-ecology uses many mathematical models
 - Long tradition
 - dynamics of ecosystems function and structure
 - Crop productivity and crop management decision support
 - predicting impacts of climate change
- Models can be linked to
 - other models
 - datasets used for calibration and validation
- Predictive models
 - Contribution to policy development in agriculture
- Contribution to climate modelling
 - Soil carbon models (Rothamsted) now part of climate change prediction models (Hadley Centre)

- Process of life science research is changing
 - Data mining the public data resources will save time and money
 - In silico research before in vitro/in vivo
 - Many biologists spend less time in the lab, more on the computer
 - Outsourced data generation research service companies not just for commercial research e.g. next gen sequencing
 - Almost no research time in the lab
 - Competitive edge can come from the software and *in silico* methods providing more focussed research
 - Some biologists only work on the computer
 - Bioinformatics, Computational Biologists

How is big data changing things?

• Creates new infrastructure requirements for life sciences

- Data centres with relevant expertise
 - European Bioinformatics Institute (EU)
 - National Center for Biotechnology Information (USA)
- International collaborations
 - ELIXIR

Internet connectivity

- Terabyte data movements (next gen sequencing)
- Remote working with data centres
- Data integration semantic web, federation
- Collaboration environments
- High performance computing (PRACE)
 - Modelling simulation (ISBE)
 - Data analysis and visualisation
 - Different requirements from physical sciences..

- Need for cross-disciplinary working
 - Computer Science and Electronic engineering
 - Mathematics and Computer science
- Development of new informatics-led sub-disciplines and careers
 - Bioinformatics
 - Computational Biologists
 - Cheminformatics
 - Data managers and data scientists
- Life science informatics as research and service
 - In commercial and academic sectors

Conclusions

- Biology is a big-data discipline, Ecology is becoming one
- Applications are everywhere and the demands are growing
- Major drivers of growth include:
 - Next generation sequencing
 - Imaging of all levels of biological scale
 - Remote (and not so remote) sensing UAVs...
- Driving demand in compute, storage, networking
- Major challenges in
 - Development of standards
 - Data integration
 - Visualisation
- Shortages of computational capacity and skills across biology

Rothamsted Research

where knowledge grows

THE END

